• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0101003 (2024)
Chenxin Gao1, Bo Cao1, Chengying Bao1, Changxi Yang1、**, and Xiaosheng Xiao2、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/CJL231240 Cite this Article Set citation alerts
    Chenxin Gao, Bo Cao, Chengying Bao, Changxi Yang, Xiaosheng Xiao. Mode‐Locked Fiber Lasers: from Single‐Mode Temporal Dissipative Soliton Mode‐Locking to Multimode Spatiotemporal Dissipative Soliton Mode‐Locking (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101003 Copy Citation Text show less
    References

    [1] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [2] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [3] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).

    [4] Wu X Q, Peng J S, Zhang Y et al. Principles and research advances of intelligent mode-locked fiber lasers[J]. Chinese Journal of Lasers, 50, 1101006(2023).

    [5] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion[J]. Applied Physics Letters, 23, 171-172(1973).

    [6] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 23, 142-144(1973).

    [7] Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[J]. Physical Review Letters, 45, 1095-1098(1980).

    [8] Haus H, Islam M. Theory of the soliton laser[J]. IEEE Journal of Quantum Electronics, 21, 1172-1188(1985).

    [9] Haus H A, Fujimoto J G, Ippen E P. Structures for additive pulse mode locking[J]. Journal of the Optical Society of America B, 8, 2068-2076(1991).

    [10] Kapitula T. Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equation[J]. Physica D: Nonlinear Phenomena, 116, 95-120(1998).

    [11] Vanin E V, Korytin A I, Sergeev A M et al. Dissipative optical solitons[J]. Physical Review A, 49, 2806-2811(1994).

    [12] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012).

    [13] Turitsyn S K, Rosanov N N, Yarutkina I A et al. Dissipative solitons in fiber lasers[J]. Physics-Uspekhi, 59, 642-668(2016).

    [14] Grelu P. Solitary waves in ultrafast fiber lasers: from solitons to dissipative solitons[J]. Optics Communications, 552, 130035(2024).

    [15] Fu W, Wright L G, Sidorenko P et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 26, 9432-9463(2018).

    [16] Krupa K, Tonello A, Barthélémy A et al. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[J]. Physical Review Letters, 116, 183901(2016).

    [17] Wright L G, Liu Z W, Nolan D A et al. Self-organized instability in graded-index multimode fibres[J]. Nature Photonics, 10, 771-776(2016).

    [18] Teğin U, Ortaç B. Spatiotemporal instability of femtosecond pulses in graded-index multimode fibers[J]. IEEE Photonics Technology Letters, 29, 2195-2198(2017).

    [19] Liu Z W, Wright L G, Christodoulides D N et al. Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber[J]. Optics Letters, 41, 3675-3678(2016).

    [20] Krupa K, Tonello A, Shalaby B M et al. Spatial beam self-cleaning in multimode fibres[J]. Nature Photonics, 11, 237-241(2017).

    [21] Niang A, Mansuryan T, Krupa K et al. Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape[J]. Optics Express, 27, 24018-24028(2019).

    [22] Hasegawa A. Self-confinement of multimode optical pulse in a glass fiber[J]. Optics Letters, 5, 416-417(1980).

    [23] Crosignani B, di Porto P. Soliton propagation in multimode optical fibers[J]. Optics Letters, 6, 329-330(1981).

    [24] Renninger W H, Wise F W. Optical solitons in graded-index multimode fibres[J]. Nature Communications, 4, 1719(2013).

    [25] Ahsan A S, Agrawal G P. Graded-index solitons in multimode fibers[J]. Optics Letters, 43, 3345-3348(2018).

    [26] Essiambre R J, Mestre M A, Ryf R et al. Experimental investigation of inter-modal four-wave mixing in few-mode fibers[J]. IEEE Photonics Technology Letters, 25, 539-542(2013).

    [27] Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers[J]. Journal of the Optical Society of America B, 33, 144-150(2016).

    [28] Dupiol R, Bendahmane A, Krupa K et al. Far-detuned cascaded intermodal four-wave mixing in a multimode fiber[J]. Optics Letters, 42, 1293-1296(2017).

    [29] Bendahmane A, Krupa K, Tonello A et al. Seeded intermodal four-wave mixing in a highly multimode fiber[J]. Journal of the Optical Society of America B, 35, 295-301(2018).

    [30] Tzang O, Caravaca-Aguirre A M, Wagner K et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres[J]. Nature Photonics, 12, 368-374(2018).

    [31] Auston D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 4, 420-422(1968).

    [32] Auston D. Forced and spontaneous phase locking of the transverse modes of a He-Ne laser[J]. IEEE Journal of Quantum Electronics, 4, 471-473(1968).

    [33] Côté D, van Driel H M. Period doubling of a femtosecond Ti∶sapphire laser by total mode locking[J]. Optics Letters, 23, 715-717(1998).

    [34] Wright L G, Sidorenko P, Pourbeyram H et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 16, 565-570(2020).

    [35] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 358, 94-97(2017).

    [36] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 7, 354-362(2013).

    [37] Wright L G, Renninger W H, Christodoulides D N et al. Nonlinear multimode photonics: nonlinear optics with many degrees of freedom[J]. Optica, 9, 824-841(2022).

    [38] Wright L G, Ziegler Z M, Lushnikov P M et al. Multimode nonlinear fiber optics: massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100516(2018).

    [39] Krupa K, Tonello A, Barthélémy A et al. Multimode nonlinear fiber optics, a spatiotemporal avenue[J]. APL Photonics, 4, 110901(2019).

    [40] Cao B, Gao C X, Liu K W et al. Spatiotemporal mode-locking and dissipative solitons in multimode fiber lasers[J]. Light: Science & Applications, 12, 260(2023).

    [41] Ma Y C, Liang Z H, Ling L et al. Intelligent manipulation of multi-dimensional laser technologies and applications[J]. Chinese Journal of Lasers, 50, 1101004(2023).

    [42] Runge A F J, Qiang Y L, Alexander T J et al. Infinite hierarchy of solitons: interaction of Kerr nonlinearity with even orders of dispersion[J]. Physical Review Research, 3, 013166(2021).

    [43] Agrawal G P. Nonlinear fiber optics[M]. Christiansen P L, Sørensen M P, Scott A C. Nonlinear science at the dawn of the 21st century. Lecture notes in physics, 542, 195-211(2007).

    [44] Richardson D J, Laming R I, Payne D N et al. 320 fs soliton generation with passively mode-locked erbium fibre laser[J]. Electronics Letters, 27, 730-732(1991).

    [45] Matsas V J, Newson T P, Richardson D J et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 28, 1391-1393(1992).

    [46] Wise F W, Chong A, Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2, 58-73(2008).

    [47] Kelly S M J, Noske D U, Pandit N et al. Source of instability in fibre soliton lasers[C](1992).

    [48] Gordon J P. Dispersive perturbations of solitons of the nonlinear Schrödinger equation[J]. Journal of the Optical Society of America B, 9, 91-97(1992).

    [49] Wang Q Q, Chen T, Zhang B T et al. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers[J]. Applied Physics Letters, 102, 131117(2013).

    [50] Tang D Y, Zhao L M, Zhao B et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A, 72, 043816(2005).

    [51] Amrani F, Haboucha A, Salhi M et al. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic[J]. Optics Letters, 34, 2120-2122(2009).

    [52] Fermann M E, Turi L, Hofer M et al. Additive-pulse-compression mode locking of a neodymium fiber laser[J]. Optics Letters, 16, 244-246(1991).

    [53] Haus H A, Tamura K, Nelson L E et al. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment[J]. IEEE Journal of Quantum Electronics, 31, 591-598(1995).

    [54] Nelson L E, Jones D J, Tamura K et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 65, 277-294(1997).

    [55] Bélanger P A, Gagnon L, Paré C. Solitary pulses in an amplified nonlinear dispersive medium[J]. Optics Letters, 14, 943-945(1989).

    [56] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).

    [57] Kieu K, Renninger W H, Chong A et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 34, 593-595(2009).

    [58] Ortaç B, Baumgartl M, Limpert J et al. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers[J]. Optics Letters, 34, 1585-1587(2009).

    [59] Anderson D, Desaix M, Karlsson M et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 10, 1185-1190(1993).

    [60] Dudley J M, Finot C, Richardson D J et al. Self-similarity in ultrafast nonlinear optics[J]. Nature Physics, 3, 597-603(2007).

    [61] Ilday F Ö, Buckley J R, Clark W G et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 92, 213902(2004).

    [62] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser[J]. Nature Photonics, 4, 307-311(2010).

    [63] Renninger W H, Chong A, Wise F W. Self-similar pulse evolution in an all-normal-dispersion laser[J]. Physical Review A, 82, 021805(2010).

    [64] Elgin J N. Soliton propagation in an optical fiber with third-order dispersion[J]. Optics Letters, 17, 1409-1410(1992).

    [65] Dennis M L, Duling I N. Third-order dispersion in femtosecond fiber lasers[J]. Optics Letters, 19, 1750-1752(1994).

    [66] Blanco-Redondo A, de Sterke C M, Sipe J E et al. Pure-quartic solitons[J]. Nature Communications, 7, 10427(2016).

    [67] Runge A F J, Hudson D D, Tam K K K et al. The pure-quartic soliton laser[J]. Nature Photonics, 14, 492-497(2020).

    [68] de Sterke C M, Runge A F J, Hudson D D et al. Pure-quartic solitons and their generalizations: theory and experiments[J]. APL Photonics, 6, 091101(2021).

    [69] Luo M, Zhang Z X, Chen N M et al. Research progress of pure quartic soliton fiber laser[J]. Acta Physica Sinica, 72, 204203(2023).

    [70] Liu L, Han Y, Huo et al. Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser[J]. Chinese Physics B, 32, 114209(2023).

    [71] Karlsson M, Höök A. Soliton-like pulses governed by fourth order dispersion in optical fibers[J]. Optics Communications, 104, 303-307(1994).

    [72] Piché M, Cormier J F, Zhu X N. Bright optical soliton in the presence of fourth-order dispersion[J]. Optics Letters, 21, 845-847(1996).

    [73] Roy S, Biancalana F. Formation of quartic solitons and a localized continuum in silicon-based slot waveguides[J]. Physical Review A, 87, 025801(2013).

    [74] Xue X X, Grelu P, Yang B F et al. Dispersion-less Kerr solitons in spectrally confined optical cavities[J]. Light: Science & Applications, 12, 19(2023).

    [75] Horak P, Poletti F. Multimode nonlinear fibre optics: theory and applications[M]. Yasin M, Harun S W, Arof H. Recent progress in optical fiber research(2012).

    [76] Song Y F, Shi X J, Wu C F et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 6, 021313(2019).

    [77] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm‒3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).

    [78] Richardson D J, Laming R I, Payne D N et al. Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch[J]. Electronics Letters, 27, 542-544(1991).

    [79] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 32, 2408-2410(2007).

    [80] Qin H Q, Xiao X S, Wang P et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 43, 1982-1985(2018).

    [81] Ding Y H, Xiao X S, Wang P et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics Express, 27, 11435-11446(2019).

    [82] Rigaud P, Kermene V, Simos C et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain[J]. Optics Express, 23, 25308-25315(2015).

    [83] Teğin U, Kakkava E, Rahmani B et al. Spatiotemporal self-similar fiber laser[J]. Optica, 6, 1412-1415(2019).

    [84] Zhang H W, Lu J Y, Peng J Y et al. Investigation of high-power spatiotemporal mode-locking with high beam quality[J]. Laser & Photonics Reviews, 17, 2300017(2023).

    [85] Ruan Q J, Xiao X S, Zou J H et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 16, 2100678(2022).

    [86] Teğin U, Rahmani B, Kakkava E et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2, 056005(2020).

    [87] Wang Y, Tang Y L, Yan S et al. High-power mode-locked 2 µm multimode fiber laser[J]. Laser Physics Letters, 15, 085101(2018).

    [88] Ma Z L, Long J G, Lin W et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 29, 9465-9473(2021).

    [89] Wu Y H, Christodoulides D, Wise F. Multimode nonlinear dynamics in anomalous dispersion spatiotemporal mode-locked lasers[EB/OL]. https:∥arxiv.org/abs/2208.01146

    [90] Cao B, Gao C X, Ding Y H et al. Self-starting spatiotemporal mode-locking using Mamyshev regenerators[J]. Optics Letters, 47, 4584-4587(2022).

    [91] Xiao X S, Ding Y H, Fan S Z et al. Spatiotemporal period-doubling bifurcation in mode-locked multimode fiber lasers[J]. ACS Photonics, 9, 3974-3980(2022).

    [92] Wright L G, Renninger W H, Christodoulides D N et al. Spatiotemporal dynamics of multimode optical solitons[J]. Optics Express, 23, 3492-3506(2015).

    [93] Gao C X, Cao B, Ding Y H et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 10, 356-363(2023).

    [94] Xing D K, Feng M, Liu C C et al. Spatiotemporal mode-locked fiber laser based on dual-resonance coupling long-period fiber grating[J]. Optics Express, 31, 7134-7143(2023).

    [95] Wang T, Yang A, Shi F et al. High-order mode lasing in all-FMF laser cavities[J]. Photonics Research, 7, 42-49(2018).

    [96] Foster M A, Salem R, Geraghty D F et al. Silicon-chip-based ultrafast optical oscilloscope[J]. Nature, 456, 81-84(2008).

    [97] Salem R, Foster M A, Gaeta A L. Application of space–time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013).

    [98] Li B W, Huang S W, Li Y N et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics[J]. Nature Communications, 8, 61(2017).

    [99] Guo Y K, Wen X X, Lin W et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 12, 67(2021).

    [100] Liu K W, Xiao X S, Ding Y H et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 9, 1898-1906(2021).

    [101] Liu K W, Xiao X S, Yang C X. Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 9, 530-534(2021).

    [102] An Y, Huang L J, Li J et al. Deep learning-based real-time mode decomposition for multimode fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 4400806(2020).

    [103] An Y, Li J, Huang L J et al. Numerical mode decomposition for multimode fiber: from multi-variable optimization to deep learning[J]. Optical Fiber Technology, 52, 101960(2019).

    [104] An Y, Huang L J, Li J et al. Learning to decompose the modes in few-mode fibers with deep convolutional neural network[J]. Optics Express, 27, 10127-10137(2019).

    [105] Ding Y H, Xiao X S, Liu K W et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 126, 093901(2021).

    [106] Regelskis K, Želudevičius J, Viskontas K et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 40, 5255-5258(2015).

    [107] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).

    [108] Liu W, Liao R Y, Zhao J et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 6, 194-197(2019).

    [109] Nie M M, Jia K P, Xie Y J et al. Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators[J]. Nature Communications, 13, 6395(2022).

    [110] Haig H, Sidorenko P, Dhar A et al. Multimode Mamyshev oscillator[J]. Optics Letters, 47, 46-49(2021).

    [111] Leon-Saval S G, Argyros A, Bland-Hawthorn J. Photonic lanterns[J]. Nanophotonics, 2, 429-440(2013).

    [112] Noordegraaf D, Skovgaard P M, Nielsen M D et al. Efficient multi-mode to single-mode coupling in a photonic lantern[J]. Optics Express, 17, 1988-1994(2009).

    [113] Wang T, Wang F, Shi F et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler[J]. Journal of Lightwave Technology, 35, 2161-2166(2017).

    [114] Wang C S, Gui L L, Qiu K Q et al. A metasurface-assisted fiber laser enables generation of high-power and high-purity structured beams[C], M4A.32(2020).

    [115] Jia W H, Gao C X, Zhao Y M et al. Intracavity spatiotemporal metasurfaces[J]. Advanced Photonics, 5, 026002(2023).

    Chenxin Gao, Bo Cao, Chengying Bao, Changxi Yang, Xiaosheng Xiao. Mode‐Locked Fiber Lasers: from Single‐Mode Temporal Dissipative Soliton Mode‐Locking to Multimode Spatiotemporal Dissipative Soliton Mode‐Locking (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101003
    Download Citation