• Optics and Precision Engineering
  • Vol. 28, Issue 6, 1344 (2020)
WANG Zhong-shi1,2,3, TIAN Da-peng1,3,*, SHI Lei1,3, and LIU Jing-hong1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/ope.20202806.1344 Cite this Article
    WANG Zhong-shi, TIAN Da-peng, SHI Lei, LIU Jing-hong. Equivalent strapdown inertial stability control of photoelectric platform considering the effect of mounting base[J]. Optics and Precision Engineering, 2020, 28(6): 1344 Copy Citation Text show less
    References

    [1] BULENT, ALTUG U. Comparison of the strapdown and gimbaled seekers utilized in aerial applications[J]. SPIE, 2012,8353:1-6.

         BULENT, ALTUG U. Comparison of the strapdown and gimbaled seekers utilized in aerial applications[J]. SPIE, 2012,8353:1-6.

    [4] DONG F, LEI X S, CHOU W S. A dynamic model and control method for a two-axis inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 432-439.

         DONG F, LEI X S, CHOU W S. A dynamic model and control method for a two-axis inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 432-439.

    [5] DENG K, CONG S, KONG D J, et al.. Discrete-time direct model reference adaptive control application in a high-precision inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 358-367.

         DENG K, CONG S, KONG D J, et al.. Discrete-time direct model reference adaptive control application in a high-precision inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 358-367.

    [6] SAFA A, YAZDANPANAH ABDOLMALAKI R. Robust output feedback tracking control for inertially stabilized platforms with matched and unmatched uncertainties[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 118-131.

         SAFA A, YAZDANPANAH ABDOLMALAKI R. Robust output feedback tracking control for inertially stabilized platforms with matched and unmatched uncertainties[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 118-131.

    [8] LEE D H, LEE J, AHN J W. Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast Fourier transform analysis[J]. Iet Electric Power Applications, 2012, 6(7): 455-461.

         LEE D H, LEE J, AHN J W. Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast Fourier transform analysis[J]. Iet Electric Power Applications, 2012, 6(7): 455-461.

    [14] ANDERSEN T, ENMARK A. Integrated Modeling of Telescopes[M]. New York: Springer, 2011.

         ANDERSEN T, ENMARK A. Integrated Modeling of Telescopes[M]. New York: Springer, 2011.

    [17] SHETTY D, KOLK R A. Mechatronics System Design [M]. Second Edition. Poston: Cengage Learning, 2010.

         SHETTY D, KOLK R A. Mechatronics System Design [M]. Second Edition. Poston: Cengage Learning, 2010.

    [18] TIAN D P, SHEN H H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feedforward[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (7): 3736-3743.

         TIAN D P, SHEN H H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feedforward[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (7): 3736-3743.

    [19] ELLIS G. Control System Design Guide[M]. Fourth Edition. Netherlands: Elsevier, 2012.

         ELLIS G. Control System Design Guide[M]. Fourth Edition. Netherlands: Elsevier, 2012.

    WANG Zhong-shi, TIAN Da-peng, SHI Lei, LIU Jing-hong. Equivalent strapdown inertial stability control of photoelectric platform considering the effect of mounting base[J]. Optics and Precision Engineering, 2020, 28(6): 1344
    Download Citation