• Chinese Optics Letters
  • Vol. 23, Issue 5, 052601 (2025)
Hongyi Qiao1,3, Shuai Wan1,3, Guanting Xu1,3, Zhen Shen1,3..., Guangcan Guo1,3, Shuiming Hu2,3,* and Chunhua Dong1,3,**|Show fewer author(s)
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
  • 3CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/COL202523.052601 Cite this Article Set citation alerts
    Hongyi Qiao, Shuai Wan, Guanting Xu, Zhen Shen, Guangcan Guo, Shuiming Hu, Chunhua Dong, "Optical isolator in a ferromagnetic microsphere coupled integrated Si3N4 waveguide," Chin. Opt. Lett. 23, 052601 (2025) Copy Citation Text show less
    References

    [1] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91(2009).

    [2] L. Bi, J. Hu, P. Jiang et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics, 5, 758(2011).

    [3] Y. Shoji, T. Mizumoto. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater., 15, 014602(2014).

    [4] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774(2017).

    [5] S. Maayani, R. Dahan, Y. Kligerman et al. Flying couplers above spinning resonators generate irreversible refraction. Nature, 558, 569(2018).

    [6] Y. Chen, Y.-L. Zhang, Z. Shen et al. Synthetic gauge field in a single optomechanical resonator. Phys. Rev. Lett., 126, 123603(2021).

    [7] K. Tanaka, K. Fujita, N. Matsuoka et al. Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions. J. Mater. Res., 13, 1989(1998).

    [8] K. J. Carothers, R. A. Norwood, J. Pyun. High Verdet constant materials for magneto-optical faraday rotation: A review. Chem. Mater., 34, 2531(2022).

    [9] J. Stone, R. Jopson, L. Stulz et al. Enhancement of faraday rotation in a fibre Fabry-Perot cavity. Electron. Lett., 26, 849(1990).

    [10] H. Ling. Theoretical investigation of transmission through a faraday-active Fabry–Perot étalon. JOSA A, 11, 754(1994).

    [11] R. Rosenberg, C. Rubinstein, D. Herriott. Resonant optical Faraday rotator. Appl. Opt., 3, 1079(1964).

    [12] L. Dong, H. Jiang, H. Chen et al. Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals. J. Appl. Phys., 107, 093101(2010).

    [13] Y. Li, D. Steuerman, J. Berezovsky et al. Cavity enhanced Faraday rotation of semiconductor quantum dots. Appl. Phys. Lett., 88, 193126(2006).

    [14] T. Zhang, W. Zhou, Z. Li et al. Reversible optical isolators and quasi-circulators using a magneto-optical Fabry–Pérot cavity. Chin. Phys. Lett., 41, 044205(2024).

    [15] K. J. Vahala. Optical microcavities. Nature, 424, 839(2003).

    [16] J. Liu, F. Bo, L. Chang et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech., and Astron., 65, 104201(2022).

    [17] W. Yan, Y. Yang, S. Liu et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica, 7, 1555(2020).

    [18] P. Pintus, D. Huang, P. A. Morton et al. Broadband TE optical isolators and circulators in silicon photonics through Ce: YIG bonding. J. Lightwave Technol., 37, 1463(2019).

    [19] W. Šmigaj, J. Romero-Vivas, B. Gralak et al. Magneto-optical circulator designed for operation in a uniform external magnetic field. Opt. Lett., 35, 568(2010).

    [20] M.-C. Tien, T. Mizumoto, P. Pintus et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express, 19, 11740(2011).

    [21] Z. Wang, S. Fan. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett., 30, 1989(2005).

    [22] C. Sayrin, C. Junge, R. Mitsch et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X, 5, 041036(2015).

    [23] R. Mitsch, C. Sayrin, B. Albrecht et al. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 5, 5713(2014).

    [24] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin hall effect of light. Science, 348, 1448(2015).

    [25] H. Shi, Y. Cheng, Z. Yang et al. Optical isolation induced by subwavelength spinning particle via spin-orbit interaction. Phys. Rev. B, 103, 094105(2021).

    [26] J. Ma, X. Xi, Z. Yu et al. Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction. Appl. Phys. Lett., 108, 151103(2016).

    [27] C.-Z. Chai, H.-Q. Zhao, H. X. Tang et al. Non-reciprocity in high-q ferromagnetic microspheres via photonic spin–orbit coupling. Laser Photonics Rev., 14, 1900252(2020).

    [28] X. Zhang, N. Zhu, C.-L. Zou et al. Optomagnonic whispering gallery microresonators. Phys. Rev. Lett., 117, 123605(2016).

    [29] A. Osada, R. Hisatomi, A. Noguchi et al. Cavity optomagnonics with spin-orbit coupled photons. Phys. Rev. Lett., 116, 223601(2016).

    [30] Z. Shen, Y.-L. Zhang, Y. Chen et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun., 9, 1797(2018).

    [31] C.-Z. Chai, Z. Shen, Y.-L. Zhang et al. Single-sideband microwave-to-optical conversion in high-q ferrimagnetic microspheres. Photonics Res., 10, 820(2022).

    [32] Z. Shen, G.-T. Xu, M. Zhang et al. Coherent coupling between phonons, magnons, and photons. Phys. Rev. Lett., 129, 243601(2022).

    [33] S. Wan, R. Niu, J.-L. Peng et al. Fabrication of the high-q si3n4 microresonators for soliton microcombs. Chin. Opt. Lett., 20, 032201(2022).

    [34] J. Haigh, S. Langenfeld, N. Lambert et al. Magneto-optical coupling in whispering-gallery-mode resonators. Phys. Rev. A, 92, 063845(2015).

    Hongyi Qiao, Shuai Wan, Guanting Xu, Zhen Shen, Guangcan Guo, Shuiming Hu, Chunhua Dong, "Optical isolator in a ferromagnetic microsphere coupled integrated Si3N4 waveguide," Chin. Opt. Lett. 23, 052601 (2025)
    Download Citation