• Chinese Journal of Lasers
  • Vol. 51, Issue 7, 0701021 (2024)
Rui Xiao1、2, Beifei Yan1、2, Zhendi Cai1、2, Pengcheng Fang1, Yanqi Xu1, Yan Wang1, Huanyao Sun1, and Qunfeng Chen1、*
Author Affiliations
  • 1Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL231206 Cite this Article Set citation alerts
    Rui Xiao, Beifei Yan, Zhendi Cai, Pengcheng Fang, Yanqi Xu, Yan Wang, Huanyao Sun, Qunfeng Chen. Interference Suppression and Frequency-Locking Circuit Design in Ultra-Stable Laser Systems[J]. Chinese Journal of Lasers, 2024, 51(7): 0701021 Copy Citation Text show less
    References

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Brewer S M, Chen J S, Hankin A M et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10-18[J]. Physical Review Letters, 123, 033201(2019).

    [3] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).

    [4] Adhikari R X. Gravitational radiation detection with laser interferometry[J]. Reviews of Modern Physics, 86, 121-151(2014).

    [5] Lucamarini M, Yuan Z L, Dynes J F et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 557, 400-403(2018).

    [6] Chen J P, Zhang C, Liu Y et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 124, 070501(2020).

    [7] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [8] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 93, 250602(2004).

    [9] Kessler T, Legero T, Sterr U. Thermal noise in optical cavities revisited[J]. Journal of the Optical Society of America B, 29, 178-184(2011).

    [10] Häfner S, Falke S, Grebing C et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    [11] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).

    [12] Wiens E, Chen Q F, Ernsting I et al. Silicon single-crystal cryogenic optical resonator[J]. Optics Letters, 39, 3242-3245(2014).

    [13] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017).

    [14] He L L, Zhang J X, Wang Z Y et al. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2×10-16 based on a low vibration level cryostat[J]. Optics Letters, 48, 2519-2522(2023).

    [15] Cole G D, Zhang W, Martin M J et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings[J]. Nature Photonics, 7, 644-650(2013).

    [16] Whittaker E A, Gehrtz M, Bjorklund G C. Residual amplitude modulation in laser electro-optic phase modulation[J]. Journal of the Optical Society of America B, 2, 1320-1326(1985).

    [17] Wong N C, Hall J L. Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection[J]. Journal of the Optical Society of America B, 2, 1527-1533(1985).

    [18] Zhang W, Martin M J, Benko C et al. Reduction of residual amplitude modulation to 1×10-6 for frequency modulation and laser stabilization[J]. Optics Letters, 39, 1980-1983(2014).

    [19] Li L F, Shen H, Bi J et al. Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation[J]. Applied Physics B, 117, 1025-1033(2014).

    [20] Tai Z Y, Yan L L, Zhang Y Y et al. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization[J]. Optics Letters, 41, 5584-5587(2016).

    [21] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [22] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).

    [23] Chen X T, Jiang Y Y, Li B et al. Laser frequency instability of 6×10-16 using 10-cm-long cavities on a cubic spacer[J]. Chinese Optics Letters, 18, 030201(2020).

    [24] Argence B, Prevost E, Lévèque T et al. Prototype of an ultra-stable optical cavity for space applications[J]. Optics Express, 20, 25409-25420(2012).

    [25] Chen Q F, Nevsky A, Cardace M et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1×10-15[J]. Review of Scientific Instruments, 85, 113107(2014).

    [26] Tao B K, Chen Q F. A vibration-insensitive-cavity design holds impact of higher than 100 g[J]. Applied Physics B, 124, 228(2018).

    [27] Xiao R, Xu Y Q, Wang Y et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2×10-16[J]. Applied Physics B, 128, 220(2022).

    Rui Xiao, Beifei Yan, Zhendi Cai, Pengcheng Fang, Yanqi Xu, Yan Wang, Huanyao Sun, Qunfeng Chen. Interference Suppression and Frequency-Locking Circuit Design in Ultra-Stable Laser Systems[J]. Chinese Journal of Lasers, 2024, 51(7): 0701021
    Download Citation