• Frontiers of Optoelectronics
  • Vol. 14, Issue 2, 221 (2021)
Kun REN1,*, Ying ZHANG1, Xiaobin REN2, Yumeng HE1, and Qun HAN1
Author Affiliations
  • 1College of Precision Instrument and Opto-electronics Engineering, Tianjin University
  • 2y Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, China
  • show less
    DOI: 10.1007/s12200-019-0921-6 Cite this Article
    Kun REN, Ying ZHANG, Xiaobin REN, Yumeng HE, Qun HAN. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials[J]. Frontiers of Optoelectronics, 2021, 14(2): 221 Copy Citation Text show less
    References

    [1] Harris S E. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36–42

    [2] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673

    [3] Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I. Fano resonance in an electrically driven plasmonic device. Nano Letters, 2016, 16 (1): 748–752

    [4] Savo S, Casse B D F, Lu W T, Sridhar S. Observation of slow-light in a metamaterials waveguide at microwave frequencies. Applied Physics Letters, 2011, 98(17): 171907

    [5] Neutens P, Lagae L, Borghs G, Van Dorpe P. Plasmon filters and resonators in metal-insulator-metal waveguides. Optics Express, 2012, 20(4): 3408–3423

    [6] Lu H, Liu X, Wang L, Gong Y, Mao D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics Express, 2011, 19(4): 2910–2915

    [7] Min C, Veronis G. Absorption switches in metal-dielectric-metal plasmonic waveguides. Optics Express, 2009, 17(13): 10757–10766

    [8] Wang J, Yuan B, Fan C, He J, Ding P, Xue Q, Liang E. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Optics Express, 2013, 21(21): 25159–25166

    [9] helby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    [10] Ouedraogo R O, Rothwell E J, Diaz A R, Fuchi K, Temme A. Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2175–2182

    [11] Dong Y D, Toyao H, Itoh T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4329–4333

    [12] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    [13] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. Threedimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339

    [14] Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 2011, 106(2): 024301

    [15] Meng H Y, Xue X X, Lin Q, Liu G D, Zhai X, Wang L L. Tunable and multi-channel perfect absorber based on graphene at midinfrared region. Applied Physics Express, 2018, 11(5): 052002

    [16] Xia S X, Zhai X, Huang Y, Liu J Q,Wang L L,Wen S C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Optics Letters, 2017, 42(15): 3052–3055

    [17] Meng H, Wang L, Liu G, Xue X, Lin Q, Zhai X. Tunable graphenebased plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Applied Optics, 2017, 56(21): 6022–6027

    [18] Xia S X, Zhai X, Wang L L, Sun B, Liu J Q, Wen S C. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Optics Express, 2016, 24(16): 17886– 17899

    [19] Xia S X, Zhai X, Wang L L, Wen S C. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Research, 2018, 6(7): 692–702

    [20] Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101 (4): 047401

    [21] Liu N, Langguth L, Weiss T, K?stel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 2009, 8 (9): 758–762

    [22] Zhu Y, Hu X, Yang H, Gong Q. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports, 2014, 4(1): 3752

    [23] Lee S, Park Q H. Dynamic coupling of plasmonic resonators. Scientific Reports, 2016, 6(1): 21989

    [24] Yang Y M, Kravchenko I I, Briggs D P, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Communications, 2014, 5: 5753

    [25] Xiao S Y,Wang T, Liu T T, Yan X C, Li Z, Xu C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2018, 126: 271–278

    [26] Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Optics Communications, 2017, 391: 9–15

    [27] Hu S, Liu D, Yang H L. Electromagnetically induced transparency in an integrated metasurface based on bright–dark–bright mode coupling. Journal of Physics D, Applied Physics, 2019, 52(17): 175305

    [28] Ren X, Ren K, Ming C. Self-reference refractive index sensor based on independently controlled double resonances in side-coupled Ushaped resonators. Sensors (Basel), 2018, 18(5): 1376

    [29] Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319

    [30] Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232

    [31] Cortie M B, Dowd A, Harris N, Ford M J. Core-shell nanoparticles with self-regulating plasmonic functionality. Physical Review B, 2007, 75(11): 113405

    [32] Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band. Applied Physics Express, 2018, 11(6): 062001

    [33] Xu Z X, Liu S Y, Li S L, Yin X X. Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states. Physical Review B, 2019, 99(4): 041104

    [34] Ren K, Ren X, He Y, Han Q. Magnetic-field sensor with selfreference characteristic based on a magnetic fluid and independent plasmonic dual resonances. Beilstein Journal of Nanotechnology, 2019, 10: 247–255

    [35] Li Q M, Zhang B, Xiong W, Shen J L. Modulation of the resonance frequency in double-split ring terahertz metamaterials. Optics Communications, 2014, 323: 162–166

    [36] Pan W, Yan Y J, Ma Y, Shen D J. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications, 2019, 431: 115–119

    [37] Huang H L, Xia H, Guo Z B, Li H J, Xie D. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial. Optics Communications, 2018, 424: 163– 169

    [38] Liu C J, Huang Y Y, Yao Z H, Yu L L, Jin Y P, Xu X L. Giant angular dependence of electromagnetic induced transparency in THz metamaterials. EPL, 2018, 121(4): 44004

    [39] Manjappa M, Srivastava Y K, Cong L, Al-Naib I, Singh R. Active photoswitching of sharp Fano resonances in THz metadevices. Advanced Materials, 2017, 29(3): 1603355

    [40] Ren X, Ren K, Cai Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Applied Optics, 2017, 56(31): H1–H9

    Kun REN, Ying ZHANG, Xiaobin REN, Yumeng HE, Qun HAN. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials[J]. Frontiers of Optoelectronics, 2021, 14(2): 221
    Download Citation