[1] B. Behroozpour, P. A. Sandborn, M. C. Wu. Lidar system architectures and circuits. IEEE Commun. Mag., 55, 135-142(2017).
[2] M.-C. Amann, T. M. Bosch, M. Lescure. Laser ranging: a critical review of unusual techniques for distance measurement. Opt. Eng., 40, 10-19(2001).
[3] J. U. Eitel, B. Höfle, L. A. Vierling. Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ., 186, 372-392(2016).
[4] K. Lim, P. Treitz, M. Wulder. LiDAR remote sensing of forest structure. Prog. Phys. Geogr., 27, 88-106(2003).
[5] D. E. Smith, M. T. Zuber, G. A. Neumann. Topography of the Moon from the Clementine lidar. J. Geophys. Res. Planets, 102, 1591-1611(1997).
[6] M. Jaboyedoff, T. Oppikofer, A. Abellán. Use of LIDAR in landslide investigations: a review. Nat. Hazards, 61, 5-28(2012).
[7] A. Hauchecorne, M. L. Chanin. Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett., 7, 565-568(1980).
[8] K. Williams, M. J. Olsen, G. V. Roe. Synthesis of transportation applications of mobile LIDAR. Remote Sens., 5, 4652-4692(2013).
[9] P. Philippov, Y. Bakhirkin, V. Moiseev. DIAL infrared lidar for monitoring of main pipelines and gas industry objects. Proc. SPIE, 3504, 119-127(1998).
[10] L. Torre-Tojal, J. M. Lopez-Guede, M. Graña. LiDAR applications for energy industry. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, 397-406(2019).
[11] M. Naeemabadi, B. Dinesen, O. K. Andersen. Investigating the impact of a motion capture system on Microsoft Kinect v2 recordings: a caution for using the technologies together. PLoS ONE, 13, e0204052(2018).
[12] B. E. Heinrichs, M. Yang. Bias and repeatability of measurements from 3D scans made using iOS-based Lidar. SAE Int. J. Adv. Curr. Practices Mobility, 3, 2219-2226(2021).
[13] B. Schwarz. Mapping the world in 3D. Nat. Photonics, 4, 429-430(2010).
[14] V. V. Klemas. Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J. Coast. Res., 315, 1260-1267(2015).
[15] D. Hutabarat, M. Rivai, D. Purwanto. Lidar-based obstacle avoidance for the autonomous mobile robot. 12th International Conference on Information & Communication Technology and System (ICTS), 197-202(2019).
[16] Z. Zhang, Y. Liu, T. Stephens. Photonic radar for contactless vital sign detection. Nat. Photonics, 17, 791-797(2023).
[17] Y. Liu, Z. Zhang, M. Burla. 11-GHz-bandwidth photonic radar using MHz electronics. Laser Photon. Rev., 16, 2100549(2022).
[18] M. Matsumoto. 3D laser range sensor module with roundly swinging mechanism for fast and wide view range image. IEEE Conference on Multisensor Fusion and Integration, 156-161(2010).
[19] http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx. http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx
[20] A. Li, W. Sun, W. Yi. Investigation of beam steering performances in rotation Risley-prism scanner. Opt. Express, 24, 12840-12850(2016).
[21] D. Wang, C. Watkins, H. Xie. MEMS mirrors for LiDAR: a review. Micromachines, 11, 456(2020).
[22] J. Sun, E. Timurdogan, A. Yaacobi. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).
[23] X. Gu, T. Shimada, F. Koyama. Giant and high-resolution beam steering using slow-light waveguide amplifier. Opt. Express, 19, 22675-22683(2011).
[24] C. Li, X. Cao, K. Wu. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application. Opt. Express, 27, 32970-32983(2019).
[25] J. Park, B. G. Jeong, S. I. Kim. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).
[26] I. Rakhmatulin, C. Andreasen. A concept of a compact and inexpensive device for controlling weeds with laser beams. Agronomy, 10, 1616(2020).
[27] C. L. Arrasmith, D. L. Dickensheets, A. Mahadevan-Jansen. MEMS-based handheld confocal microscope for in-vivo skin imaging. Opt. Express, 18, 3805-3819(2010).
[28] M. C. Shin, A. Mohanty, K. Watson. Chip-scale blue light phased array. Opt. Lett., 45, 1934-1937(2020).
[29] X. Zhang, K. Kwon, J. Henriksson. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253-258(2022).
[30] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).
[31] S. W. Hutchings, N. Johnston, I. Gyongy. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging. IEEE J. Solid-State Circuit, 54, 2947-2956(2019).
[32] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[33] X. Yang, J. Su, L. Hao. Optical OCDMA coding and 3D imaging technique for non-scanning full-waveform LiDAR system. Appl. Opt., 59, 135-139(2020).
[34] D. J. Lum, S. H. Knarr, J. C. Howell. Frequency-modulated continuous-wave LiDAR compressive depth-mapping. Opt. Express, 26, 15420-15435(2018).
[35] X. Jiang, S. Wilton, I. Kudryashov. InGaAsP/InP Geiger-mode APD-based LiDAR. Proc. SPIE, 10729, 107290C(2018).
[36] G. Adamo, A. Busacca. Time of flight measurements via two LiDAR systems with SiPM and APD. AEIT International Annual Conference (AEIT), 1-5(2016).
[37] P. Adany, C. Allen, R. Hui. Chirped lidar using simplified homodyne detection. J. Lightwave Technol., 27, 3351-3357(2009).
[38] D. Stoppa, L. Pancheri, M. Scandiuzzo. A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans. Circuits Syst. I Regul. Pap., 54, 4-12(2007).
[39] I. Takai, H. Matsubara, M. Soga. Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems. Sensors, 16, 459(2016).
[40] G. F. Marshall, G. E. Stutz. Handbook of Optical and Laser Scanning(2012).
[41] V. Vuthea, H. Toshiyoshi. A design of Risley scanner for LiDAR applications. International Conference on Optical MEMS and Nanophotonics, 1-2(2018).
[42] C. Niclass, D. Inoue, H. Matsubara. Development of automotive LIDAR. Electr. Commun. Jpn., 98, 28-33(2015).
[43] https://novantaphotonics.com/product/air-bearing-polygon-scanners/. https://novantaphotonics.com/product/air-bearing-polygon-scanners/
[44] Z. Li, J. Chen, E. Baltsavias. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book(2008).
[45] https://www.thorlabs.com/catalogpages/V21/366.pdf.. https://www.thorlabs.com/catalogpages/V21/366.pdf.
[46] https://novantaphotonics.com/product/62xxk-and-83xxk-series-galvanometers/. https://novantaphotonics.com/product/62xxk-and-83xxk-series-galvanometers/
[47] Y. Li, T. Cui, Q. Li. A study of correction method to the pincushion distortion based on dual galvanometer LiDAR scanning system. Optik, 181, 555-561(2019).
[48] X. T. Nguyen, H.-J. Lee, H. Kim. A high-definition LIDAR system based on two-mirror deflection scanners. IEEE Sens. J., 18, 559-568(2017).
[49] W. C. Warger, S. A. Guerrera, Z. Eastman. Efficient confocal microscopy with a dual-wedge scanner. Proc. SPIE, 7184, 71840M(2009).
[50] W. C. Warger, C. A. DiMarzio. Dual-wedge scanning confocal reflectance microscope. Opt. Lett., 32, 2140-2142(2007).
[51] J. J. Degnan. Ray matrix approach for the real time control of SLR2000 optical elements. 14th International Workshop on Laser Ranging, 1-7(2004).
[52] K. Hirabayashi, T. Yamamoto, S. Hino. Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch. J. Lightwave Technol., 15, 874-882(1997).
[53] G. F. Marshall. Risley prism scan patterns. Proc. SPIE, 3787, 74-86(1999).
[54] C. T. Amirault, C. A. DiMarzio. Precision pointing using a dual-wedge scanner. Appl. Opt., 24, 1302-1308(1985).
[55] Y. Li. Third-order theory of the Risley-prism-based beam steering system. Appl. Opt., 50, 679-686(2011).
[56] Y. Yang. Analytic solution of free space optical beam steering using Risley prisms. J. Lightwave Technol., 26, 3576-3583(2008).
[57] A. Schitea, M. Tuef, V.-F. Duma. Modeling of Risley prisms devices for exact scan patterns. Proc. SPIE, 8789, 878912(2013).
[58] G. García-Torales, J. P. Rolland, V.-F. Duma, A. G. H. Podoleanu. Risley prisms applications: an overview. Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology, 48(2022).
[59] Y. Zhou, Y. Lu, M. Hei. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking. Appl. Opt., 52, 2849-2857(2013).
[60] Livox LiDAR. HAP.
[61] K. Wang, A. Nirmalathas, C. Lim. Full-duplex gigabit indoor optical wireless communication system with CAP modulation. IEEE Photon. Technol. Lett., 28, 790-793(2016).
[62] H. Urey, D. W. Wine, T. D. Osborn. Optical performance requirements for MEMS-scanner-based microdisplays. Proc. SPIE, 4178, 176-185(2000).
[63] H. Urey, D. W. Wine, J. R. Lewis. Scanner design and resolution trade-offs for miniature scanning displays. Proc. SPIE, 3636, 60-68(1999).
[64] Y. Pan, H. Xie, G. K. Fedder. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett., 26, 1966-1968(2001).
[65] K. Isamoto, K. Totsuka, T. Suzuki. A high speed MEMS scanner for 140-kHz SS-OCT. 16th International Conference on Optical MEMS and Nanophotonics, 73-74(2011).
[66] S. T. Holmström, U. Baran, H. Urey. MEMS laser scanners: a review. J. Microelectromech. Syst., 23, 259-275(2014).
[67] Y. Xu, J. Singh, T. Selvaratnam. Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning. IEEE J. Sel. Top. Quantum Electron., 15, 1432-1438(2009).
[68] M. Pallay, M. Daeichin, S. Towfighian. Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation. Nonlinear Dyn., 89, 1525-1538(2017).
[69] S. Hsu, T. Klose, C. Drabe. Fabrication and characterization of a dynamically flat high resolution micro-scanner. J. Opt. A, 10, 044005(2008).
[70] U. Hofmann, J. Janes, H.-J. Quenzer. High-Q MEMS resonators for laser beam scanning displays. Micromachines, 3, 509-528(2012).
[71] H. Schenk, P. Dürr, D. Kunze. A resonantly excited 2D-micro-scanning-mirror with large deflection. Sens. Actuators A: Phys., 89, 104-111(2001).
[72] I.-J. Cho, T. Song, S.-H. Baek. A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech., 53, 2450-2457(2005).
[73] A. D. Yalcinkaya, H. Urey, D. Brown. Two-axis electromagnetic microscanner for high resolution displays. J. Microelectromech. Syst., 15, 786-794(2006).
[74] K. Torashima. A micro scanner with low power consumption using double coil layers on a permalloy film. International Conference on Optical MEMS, 192-193(2001).
[75] P. Muralt, R. G. Polcawich, S. Trolier-McKinstry. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull., 34, 658-664(2009).
[76] J. S. Pulskamp, R. G. Polcawich, R. Q. Rudy. Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull., 37, 1062-1070(2012).
[77] U. Baran, D. Brown, S. Holmstrom. Resonant PZT MEMS scanner for high-resolution displays. J. Microelectromech. Syst., 21, 1303-1310(2012).
[78] H. Urey, S. Holmstrom, U. Baran. MEMS scanners and emerging 3D and interactive augmented reality display applications. Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2485-2488(2013).
[79] H. Urey. MEMS scanners for display and imaging applications. Proc. SPIE, 5604, 218-229(2004).
[80] M. Tani, M. Akamatsu, Y. Yasuda. A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display. IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 25-26(2006).
[81] T. Sandner, M. Wildenhain, T. Klose. 3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement. EEE/LEOS International Conference on Optical MEMS and Nanophotonics, 78-79(2008).
[82] T. Sandner, T. Grasshoff, M. Schwarzenberg. Quasistatic microscanner with linearized scanning for an adaptive hree-dimensional laser camera. J. Micro/Nanolithography, MEMS, MOEMS, 13, 011114(2014).
[83] R. Chen, Y. Shao, Y. Zhou. A semisolid micromechanical beam steering system based on micrometa-lens arrays. Nano Lett., 22, 1595-1603(2022).
[84] C.-P. Hsu, B. Li, B. Solano-Rivas. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).
[85] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).
[86] A. Martin, D. Dodane, L. Leviandier. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol., 36, 4640-4645(2018).
[87] C. V. Poulton, A. Yaacobi, D. B. Cole. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091-4094(2017).
[88] H. Qiu, Y. Liu, X. Meng. Energy-efficient integrated silicon optical phased array. Front. Optoelectron., 16, 23(2023).
[89] Y. Horie, A. Arbabi, E. Arbabi. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photon., 5, 1711-1717(2018).
[90] J. C. Hulme, J. K. Doylend, M. J. R. Heck. Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express, 23, 5861-5874(2015).
[91] S. Hamann, A. Ceballos, J. Landry. High-speed random access optical scanning using a linear MEMS phased array. Opt. Lett., 43, 5455-5458(2018).
[92] D. R. Gozzard, L. E. Roberts, J. T. Spollard. Fast beam steering with an optical phased array. Opt. Lett., 45, 3793-3796(2020).
[93] G. Kang, S. H. Kim, J. B. You. Silicon-based optical phased array using electro-optic phase shifters. IEEE Photon. Technol. Lett., 31, 1685-1688(2019).
[94] M. Jarrahi, R. Fabian, W. Pease. High-speed optical beam-steering based on phase-arrayed waveguides. J. Vac. Sci. Technol. B, 26, 2124-2126(2008).
[95] W. R. Huang, J. Montoya, J. E. Kansky. High speed, high power one-dimensional beam steering from a 6-element optical phased array. Opt. Express, 20, 17311-17318(2012).
[96] S. J. Spector. Review of lens-assisted beam steering methods. J. Opt. Microsyst., 2, 011003(2022).
[97] C. Rogers, A. Y. Piggott, D. J. Thomson. A universal 3D imaging sensor on a silicon photonics platform. Nature, 590, 256-261(2021).
[98] Y. Wang, G. Zhou, X. Zhang. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica, 6, 557-562(2019).
[99] X. Cao, G. Qiu, K. Wu. Lidar system based on lens assisted integrated beam steering. Opt. Lett., 45, 5816-5819(2020).
[100] Y. C. Chang, M. C. Shin, C. T. Phare. Metalens-enabled low-power solid-state 2D beam steering. Conference on Lasers and Electro-Optics (CLEO), 1-2(2019).
[101] D. Inoue, T. Ichikawa, A. Kawasaki. Demonstration of a new optical scanner using silicon photonics integrated circuit. Opt. Express, 27, 2499-2508(2019).
[102] H. Fu, Q. Li. Light arrays measure up on a chip the size of a fingertip. Nature, 603, 232-233(2022).
[103] E. H. Cook, S. J. Spector, M. G. Moebius. Polysilicon grating switches for LiDAR. J. Microelectromech. Syst., 29, 1008-1013(2020).
[104] K. Kondo, T. Tatebe, S. Hachuda. Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating. Opt. Lett., 42, 4990-4993(2017).
[105] T. Baba, T. Tamanuki, H. Ito. Silicon photonics FMCW LiDAR chip with a slow-light grating beam scanner. IEEE J. Sel. Top. Quantum Electron., 28, 8300208(2022).
[106] J. Maeda, D. Akiyama, H. Ito. Prism lens for beam collimation in a silicon photonic crystal beam-steering device. Opt. Lett., 44, 5780-5783(2019).
[107] T. Tamanuki, H. Ito, T. Baba. Thermo-optic beam scanner employing silicon photonic crystal slow-light waveguides. J. Lightwave Technol., 39, 904-911(2021).
[108] H. Ito, Y. Kusunoki, J. Maeda. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica, 7, 47-52(2020).
[109] P. Berini. Optical beam steering using tunable metasurfaces. ACS Photon., 9, 2204-2218(2022).
[110] I. Kim, R. J. Martins, J. Jang. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).
[111] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).
[112] J. Lee, S. Jung, P.-Y. Chen. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater., 2, 1057-1063(2014).
[113] S.-Q. Li, X. Xu, R. M. Veetil. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).
[114] https://holoeye.com/spatial-light-modulators/. https://holoeye.com/spatial-light-modulators/
[115] J. Xu, M. Cua, E. H. Zhou. Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array. Opt. Lett., 43, 5255-5258(2018).
[116] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).
[117] D. Stellinga, D. B. Phillips, S. P. Mekhail. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395-1399(2021).
[118] B. Smith, B. Hellman, A. Gin. Single chip lidar with discrete beam steering by digital micromirror device. Opt. Express, 25, 14732-14745(2017).
[119] G. R. B. E. Römer, P. Bechtold. Electro-optic and acousto-optic laser beam scanners. Phys. Procedia, 56, 29-39(2014).
[120] B. Li, Q. Lin, M. Li. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature, 620, 316-322(2023).
[121] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[122] K. Goda, K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).
[123] K. Nakagawa, A. Iwasaki, Y. Oishi. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).
[124] S. Karpf, C. T. Riche, D. Di Carlo. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat. Commun., 11, 2062(2020).
[125] Z. Li, Z. Zang, Y. Han. Solid-state FMCW LiDAR with two-dimensional spectral scanning using a virtually imaged phased array. Opt. Express, 29, 16547-16562(2021).
[126] Z. Zang, Y. Xu, H. Wang. Ultrafast agile optical beam steering based on arrayed diffractive elements. Asia Communications and Photonics Conference, T4D.6(2021).
[127] R. Qian, K. C. Zhou, J. Zhang. Video-rate high-precision time-frequency multiplexed 3D coherent ranging. Nat. Commun., 13, 1476(2022).
[128] A. Mahjoubfar, D. V. Churkin, S. Barland. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).
[129] J. Zhang, R. Qian, K. C. Zhou. Real-time wide-field spectral-scanning FMCW coherent 3D imaging and velocimetry. Opt. Lett., 47, 4064-4067(2022).
[130] M. Okano, C. Chong. Swept source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt. Express, 28, 23898-23915(2020).
[131] Z. Li, Z. Zang, H. Fu. Virtually imaged phased-array-based 2D nonmechanical beam-steering device for FMCW LiDAR. Appl. Opt., 60, 2177-2189(2021).
[132] S. Royo, M. Ballesta-Garcia. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci., 9, 4093(2019).
[133] R. Roriz, J. Cabral, T. Gomes. Automotive LiDAR technology: a survey. IEEE Trans. Intell. Transp. Syst., 23, 6282-6297(2022).
[134] C. Zhang, S. Lindner, I. M. Antolovic. A 30-frames/s, 252 × 144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J. Solid-State Circuit, 54, 1137-1151(2019).
[135] https://velodynelidar.com/products/ultra-puck/. https://velodynelidar.com/products/ultra-puck/
[136] https://ouster.com/products/scanning-lidar/os2-sensor/. https://ouster.com/products/scanning-lidar/os2-sensor/
[137] https://www.robosense.ai/en/resources-19. https://www.robosense.ai/en/resources-19
[138] A. Li, X. Liu, J. Sun. Risley-prism-based multi-beam scanning LiDAR for high-resolution three-dimensional imaging. Opt. Laser Eng., 150, 106836(2022).
[139] D. Morrison, S. Kennedy, D. Delic. A 64 × 64 SPAD flash LIDAR sensor using a triple integration timing technique with 1.95 mm depth resolution. IEEE Sens. J., 21, 11361-11373(2021).
[140] D. Hanto, H. Pratomo, A. Rianaris. Time of flight lidar employing dual-modulation frequencies switching for optimizing unambiguous range extension and high resolution. IEEE Trans. Instrum. Meas., 72, 72001408(2023).
[141] C. S. Bamji, S. Mehta, B. Thompson. IMpixel 65nm BSI 320MHz demodulated TOF Image sensor with 3 µm global shutter pixels and analog binning. International Solid–State Circuits Conference (ISSCC), 94-96(2018).
[142] M.-S. Keel, Y.-G. Jin, Y. Kim. A VGA indirect time-of-flight CMOS image sensor with 4-tap 7-μm global-shutter pixel and fixed-pattern phase noise self-compensation. IEEE J. Solid-State Circuit, 55, 889-897(2020).
[143] M.-S. Keel, D. Kim, Y. Kim. 7.1 A 4-tap 3.5 μm 1.2 Mpixel indirect time-of-flight CMOS image sensor with peak current mitigation and multi-user interference cancellation. IEEE International Solid-State Circuits Conference (ISSCC), 106-108(2021).
[144] P. Fankhauser, M. Bloesch, D. Rodriguez. Kinect v2 for mobile robot navigation: evaluation and modeling. International Conference on Advanced Robotics (ICAR), 388-394(2015).
[145] https://www.neuvition.com/products/titan-s2.html. https://www.neuvition.com/products/titan-s2.html
[146] https://thinklucid.com/helios-time-of-flight-tof-camera/?gclid=EAIaIQobChMI5amz2eaM_gIVAGUPAh3dGANZEAMYASAAEgL_1PD_BwE. https://thinklucid.com/helios-time-of-flight-tof-camera/?gclid=EAIaIQobChMI5amz2eaM_gIVAGUPAh3dGANZEAMYASAAEgL_1PD_BwE
[147] https://store.dji.com/product/livox-mid?vid=48991&set_region=US&from=store-nav. https://store.dji.com/product/livox-mid?vid=48991&set_region=US&from=store-nav
[148] A. Lukashchuk, J. Riemensberger, M. Karpov. Megapixel per second hardware efficient LiDAR based on microcombs. Conference on Lasers and Electro-Optics (CLEO), 1-2(2021).
[149] G. Kim, Y. Park. LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express, 24, 23810-23828(2016).
[150] T. Fersch, R. Weigel, A. Koelpin. A CDMA modulation technique for automotive time-of-flight LiDAR systems. IEEE Sens. J., 17, 3507-3516(2017).
[151] X. Yang, L. Hao, Y. Wang. Adjustable higher SNR and long-range 3D-imaging cluster lidar based on a coded full-waveform technique. Appl. Opt., 58, 4671-4677(2019).
[152] Z. Zang, Z. Li, Y. Luo. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photon., 7, 046102(2022).