• Photonics Research
  • Vol. 12, Issue 8, 1709 (2024)
Zhi Li1,†, Yaqi Han1,†, Lican Wu1, Zihan Zang1..., Maolin Dai2,3, Sze Yun Set2,3, Shinji Yamashita2,3, Qian Li4 and H. Y. Fu1,*|Show fewer author(s)
Author Affiliations
  • 1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
  • 2Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
  • 3Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
  • 4School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.509710 Cite this Article Set citation alerts
    Zhi Li, Yaqi Han, Lican Wu, Zihan Zang, Maolin Dai, Sze Yun Set, Shinji Yamashita, Qian Li, H. Y. Fu, "Towards an ultrafast 3D imaging scanning LiDAR system: a review," Photonics Res. 12, 1709 (2024) Copy Citation Text show less
    References

    [1] B. Behroozpour, P. A. Sandborn, M. C. Wu. Lidar system architectures and circuits. IEEE Commun. Mag., 55, 135-142(2017).

    [2] M.-C. Amann, T. M. Bosch, M. Lescure. Laser ranging: a critical review of unusual techniques for distance measurement. Opt. Eng., 40, 10-19(2001).

    [3] J. U. Eitel, B. Höfle, L. A. Vierling. Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ., 186, 372-392(2016).

    [4] K. Lim, P. Treitz, M. Wulder. LiDAR remote sensing of forest structure. Prog. Phys. Geogr., 27, 88-106(2003).

    [5] D. E. Smith, M. T. Zuber, G. A. Neumann. Topography of the Moon from the Clementine lidar. J. Geophys. Res. Planets, 102, 1591-1611(1997).

    [6] M. Jaboyedoff, T. Oppikofer, A. Abellán. Use of LIDAR in landslide investigations: a review. Nat. Hazards, 61, 5-28(2012).

    [7] A. Hauchecorne, M. L. Chanin. Density and temperature profiles obtained by lidar between 35 and 70  km. Geophys. Res. Lett., 7, 565-568(1980).

    [8] K. Williams, M. J. Olsen, G. V. Roe. Synthesis of transportation applications of mobile LIDAR. Remote Sens., 5, 4652-4692(2013).

    [9] P. Philippov, Y. Bakhirkin, V. Moiseev. DIAL infrared lidar for monitoring of main pipelines and gas industry objects. Proc. SPIE, 3504, 119-127(1998).

    [10] L. Torre-Tojal, J. M. Lopez-Guede, M. Graña. LiDAR applications for energy industry. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, 397-406(2019).

    [11] M. Naeemabadi, B. Dinesen, O. K. Andersen. Investigating the impact of a motion capture system on Microsoft Kinect v2 recordings: a caution for using the technologies together. PLoS ONE, 13, e0204052(2018).

    [12] B. E. Heinrichs, M. Yang. Bias and repeatability of measurements from 3D scans made using iOS-based Lidar. SAE Int. J. Adv. Curr. Practices Mobility, 3, 2219-2226(2021).

    [13] B. Schwarz. Mapping the world in 3D. Nat. Photonics, 4, 429-430(2010).

    [14] V. V. Klemas. Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J. Coast. Res., 315, 1260-1267(2015).

    [15] D. Hutabarat, M. Rivai, D. Purwanto. Lidar-based obstacle avoidance for the autonomous mobile robot. 12th International Conference on Information & Communication Technology and System (ICTS), 197-202(2019).

    [16] Z. Zhang, Y. Liu, T. Stephens. Photonic radar for contactless vital sign detection. Nat. Photonics, 17, 791-797(2023).

    [17] Y. Liu, Z. Zhang, M. Burla. 11-GHz-bandwidth photonic radar using MHz electronics. Laser Photon. Rev., 16, 2100549(2022).

    [18] M. Matsumoto. 3D laser range sensor module with roundly swinging mechanism for fast and wide view range image. IEEE Conference on Multisensor Fusion and Integration, 156-161(2010).

    [19] http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx. http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx

    [20] A. Li, W. Sun, W. Yi. Investigation of beam steering performances in rotation Risley-prism scanner. Opt. Express, 24, 12840-12850(2016).

    [21] D. Wang, C. Watkins, H. Xie. MEMS mirrors for LiDAR: a review. Micromachines, 11, 456(2020).

    [22] J. Sun, E. Timurdogan, A. Yaacobi. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [23] X. Gu, T. Shimada, F. Koyama. Giant and high-resolution beam steering using slow-light waveguide amplifier. Opt. Express, 19, 22675-22683(2011).

    [24] C. Li, X. Cao, K. Wu. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application. Opt. Express, 27, 32970-32983(2019).

    [25] J. Park, B. G. Jeong, S. I. Kim. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [26] I. Rakhmatulin, C. Andreasen. A concept of a compact and inexpensive device for controlling weeds with laser beams. Agronomy, 10, 1616(2020).

    [27] C. L. Arrasmith, D. L. Dickensheets, A. Mahadevan-Jansen. MEMS-based handheld confocal microscope for in-vivo skin imaging. Opt. Express, 18, 3805-3819(2010).

    [28] M. C. Shin, A. Mohanty, K. Watson. Chip-scale blue light phased array. Opt. Lett., 45, 1934-1937(2020).

    [29] X. Zhang, K. Kwon, J. Henriksson. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253-258(2022).

    [30] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [31] S. W. Hutchings, N. Johnston, I. Gyongy. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging. IEEE J. Solid-State Circuit, 54, 2947-2956(2019).

    [32] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [33] X. Yang, J. Su, L. Hao. Optical OCDMA coding and 3D imaging technique for non-scanning full-waveform LiDAR system. Appl. Opt., 59, 135-139(2020).

    [34] D. J. Lum, S. H. Knarr, J. C. Howell. Frequency-modulated continuous-wave LiDAR compressive depth-mapping. Opt. Express, 26, 15420-15435(2018).

    [35] X. Jiang, S. Wilton, I. Kudryashov. InGaAsP/InP Geiger-mode APD-based LiDAR. Proc. SPIE, 10729, 107290C(2018).

    [36] G. Adamo, A. Busacca. Time of flight measurements via two LiDAR systems with SiPM and APD. AEIT International Annual Conference (AEIT), 1-5(2016).

    [37] P. Adany, C. Allen, R. Hui. Chirped lidar using simplified homodyne detection. J. Lightwave Technol., 27, 3351-3357(2009).

    [38] D. Stoppa, L. Pancheri, M. Scandiuzzo. A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans. Circuits Syst. I Regul. Pap., 54, 4-12(2007).

    [39] I. Takai, H. Matsubara, M. Soga. Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems. Sensors, 16, 459(2016).

    [40] G. F. Marshall, G. E. Stutz. Handbook of Optical and Laser Scanning(2012).

    [41] V. Vuthea, H. Toshiyoshi. A design of Risley scanner for LiDAR applications. International Conference on Optical MEMS and Nanophotonics, 1-2(2018).

    [42] C. Niclass, D. Inoue, H. Matsubara. Development of automotive LIDAR. Electr. Commun. Jpn., 98, 28-33(2015).

    [43] https://novantaphotonics.com/product/air-bearing-polygon-scanners/. https://novantaphotonics.com/product/air-bearing-polygon-scanners/

    [44] Z. Li, J. Chen, E. Baltsavias. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book(2008).

    [45] https://www.thorlabs.com/catalogpages/V21/366.pdf.. https://www.thorlabs.com/catalogpages/V21/366.pdf.

    [46] https://novantaphotonics.com/product/62xxk-and-83xxk-series-galvanometers/. https://novantaphotonics.com/product/62xxk-and-83xxk-series-galvanometers/

    [47] Y. Li, T. Cui, Q. Li. A study of correction method to the pincushion distortion based on dual galvanometer LiDAR scanning system. Optik, 181, 555-561(2019).

    [48] X. T. Nguyen, H.-J. Lee, H. Kim. A high-definition LIDAR system based on two-mirror deflection scanners. IEEE Sens. J., 18, 559-568(2017).

    [49] W. C. Warger, S. A. Guerrera, Z. Eastman. Efficient confocal microscopy with a dual-wedge scanner. Proc. SPIE, 7184, 71840M(2009).

    [50] W. C. Warger, C. A. DiMarzio. Dual-wedge scanning confocal reflectance microscope. Opt. Lett., 32, 2140-2142(2007).

    [51] J. J. Degnan. Ray matrix approach for the real time control of SLR2000 optical elements. 14th International Workshop on Laser Ranging, 1-7(2004).

    [52] K. Hirabayashi, T. Yamamoto, S. Hino. Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch. J. Lightwave Technol., 15, 874-882(1997).

    [53] G. F. Marshall. Risley prism scan patterns. Proc. SPIE, 3787, 74-86(1999).

    [54] C. T. Amirault, C. A. DiMarzio. Precision pointing using a dual-wedge scanner. Appl. Opt., 24, 1302-1308(1985).

    [55] Y. Li. Third-order theory of the Risley-prism-based beam steering system. Appl. Opt., 50, 679-686(2011).

    [56] Y. Yang. Analytic solution of free space optical beam steering using Risley prisms. J. Lightwave Technol., 26, 3576-3583(2008).

    [57] A. Schitea, M. Tuef, V.-F. Duma. Modeling of Risley prisms devices for exact scan patterns. Proc. SPIE, 8789, 878912(2013).

    [58] G. García-Torales, J. P. Rolland, V.-F. Duma, A. G. H. Podoleanu. Risley prisms applications: an overview. Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology, 48(2022).

    [59] Y. Zhou, Y. Lu, M. Hei. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking. Appl. Opt., 52, 2849-2857(2013).

    [60] Livox LiDAR. HAP.

    [61] K. Wang, A. Nirmalathas, C. Lim. Full-duplex gigabit indoor optical wireless communication system with CAP modulation. IEEE Photon. Technol. Lett., 28, 790-793(2016).

    [62] H. Urey, D. W. Wine, T. D. Osborn. Optical performance requirements for MEMS-scanner-based microdisplays. Proc. SPIE, 4178, 176-185(2000).

    [63] H. Urey, D. W. Wine, J. R. Lewis. Scanner design and resolution trade-offs for miniature scanning displays. Proc. SPIE, 3636, 60-68(1999).

    [64] Y. Pan, H. Xie, G. K. Fedder. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett., 26, 1966-1968(2001).

    [65] K. Isamoto, K. Totsuka, T. Suzuki. A high speed MEMS scanner for 140-kHz SS-OCT. 16th International Conference on Optical MEMS and Nanophotonics, 73-74(2011).

    [66] S. T. Holmström, U. Baran, H. Urey. MEMS laser scanners: a review. J. Microelectromech. Syst., 23, 259-275(2014).

    [67] Y. Xu, J. Singh, T. Selvaratnam. Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning. IEEE J. Sel. Top. Quantum Electron., 15, 1432-1438(2009).

    [68] M. Pallay, M. Daeichin, S. Towfighian. Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation. Nonlinear Dyn., 89, 1525-1538(2017).

    [69] S. Hsu, T. Klose, C. Drabe. Fabrication and characterization of a dynamically flat high resolution micro-scanner. J. Opt. A, 10, 044005(2008).

    [70] U. Hofmann, J. Janes, H.-J. Quenzer. High-Q MEMS resonators for laser beam scanning displays. Micromachines, 3, 509-528(2012).

    [71] H. Schenk, P. Dürr, D. Kunze. A resonantly excited 2D-micro-scanning-mirror with large deflection. Sens. Actuators A: Phys., 89, 104-111(2001).

    [72] I.-J. Cho, T. Song, S.-H. Baek. A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech., 53, 2450-2457(2005).

    [73] A. D. Yalcinkaya, H. Urey, D. Brown. Two-axis electromagnetic microscanner for high resolution displays. J. Microelectromech. Syst., 15, 786-794(2006).

    [74] K. Torashima. A micro scanner with low power consumption using double coil layers on a permalloy film. International Conference on Optical MEMS, 192-193(2001).

    [75] P. Muralt, R. G. Polcawich, S. Trolier-McKinstry. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull., 34, 658-664(2009).

    [76] J. S. Pulskamp, R. G. Polcawich, R. Q. Rudy. Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull., 37, 1062-1070(2012).

    [77] U. Baran, D. Brown, S. Holmstrom. Resonant PZT MEMS scanner for high-resolution displays. J. Microelectromech. Syst., 21, 1303-1310(2012).

    [78] H. Urey, S. Holmstrom, U. Baran. MEMS scanners and emerging 3D and interactive augmented reality display applications. Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2485-2488(2013).

    [79] H. Urey. MEMS scanners for display and imaging applications. Proc. SPIE, 5604, 218-229(2004).

    [80] M. Tani, M. Akamatsu, Y. Yasuda. A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display. IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 25-26(2006).

    [81] T. Sandner, M. Wildenhain, T. Klose. 3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement. EEE/LEOS International Conference on Optical MEMS and Nanophotonics, 78-79(2008).

    [82] T. Sandner, T. Grasshoff, M. Schwarzenberg. Quasistatic microscanner with linearized scanning for an adaptive hree-dimensional laser camera. J. Micro/Nanolithography, MEMS, MOEMS, 13, 011114(2014).

    [83] R. Chen, Y. Shao, Y. Zhou. A semisolid micromechanical beam steering system based on micrometa-lens arrays. Nano Lett., 22, 1595-1603(2022).

    [84] C.-P. Hsu, B. Li, B. Solano-Rivas. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).

    [85] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).

    [86] A. Martin, D. Dodane, L. Leviandier. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol., 36, 4640-4645(2018).

    [87] C. V. Poulton, A. Yaacobi, D. B. Cole. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091-4094(2017).

    [88] H. Qiu, Y. Liu, X. Meng. Energy-efficient integrated silicon optical phased array. Front. Optoelectron., 16, 23(2023).

    [89] Y. Horie, A. Arbabi, E. Arbabi. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photon., 5, 1711-1717(2018).

    [90] J. C. Hulme, J. K. Doylend, M. J. R. Heck. Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express, 23, 5861-5874(2015).

    [91] S. Hamann, A. Ceballos, J. Landry. High-speed random access optical scanning using a linear MEMS phased array. Opt. Lett., 43, 5455-5458(2018).

    [92] D. R. Gozzard, L. E. Roberts, J. T. Spollard. Fast beam steering with an optical phased array. Opt. Lett., 45, 3793-3796(2020).

    [93] G. Kang, S. H. Kim, J. B. You. Silicon-based optical phased array using electro-optic phase shifters. IEEE Photon. Technol. Lett., 31, 1685-1688(2019).

    [94] M. Jarrahi, R. Fabian, W. Pease. High-speed optical beam-steering based on phase-arrayed waveguides. J. Vac. Sci. Technol. B, 26, 2124-2126(2008).

    [95] W. R. Huang, J. Montoya, J. E. Kansky. High speed, high power one-dimensional beam steering from a 6-element optical phased array. Opt. Express, 20, 17311-17318(2012).

    [96] S. J. Spector. Review of lens-assisted beam steering methods. J. Opt. Microsyst., 2, 011003(2022).

    [97] C. Rogers, A. Y. Piggott, D. J. Thomson. A universal 3D imaging sensor on a silicon photonics platform. Nature, 590, 256-261(2021).

    [98] Y. Wang, G. Zhou, X. Zhang. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica, 6, 557-562(2019).

    [99] X. Cao, G. Qiu, K. Wu. Lidar system based on lens assisted integrated beam steering. Opt. Lett., 45, 5816-5819(2020).

    [100] Y. C. Chang, M. C. Shin, C. T. Phare. Metalens-enabled low-power solid-state 2D beam steering. Conference on Lasers and Electro-Optics (CLEO), 1-2(2019).

    [101] D. Inoue, T. Ichikawa, A. Kawasaki. Demonstration of a new optical scanner using silicon photonics integrated circuit. Opt. Express, 27, 2499-2508(2019).

    [102] H. Fu, Q. Li. Light arrays measure up on a chip the size of a fingertip. Nature, 603, 232-233(2022).

    [103] E. H. Cook, S. J. Spector, M. G. Moebius. Polysilicon grating switches for LiDAR. J. Microelectromech. Syst., 29, 1008-1013(2020).

    [104] K. Kondo, T. Tatebe, S. Hachuda. Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating. Opt. Lett., 42, 4990-4993(2017).

    [105] T. Baba, T. Tamanuki, H. Ito. Silicon photonics FMCW LiDAR chip with a slow-light grating beam scanner. IEEE J. Sel. Top. Quantum Electron., 28, 8300208(2022).

    [106] J. Maeda, D. Akiyama, H. Ito. Prism lens for beam collimation in a silicon photonic crystal beam-steering device. Opt. Lett., 44, 5780-5783(2019).

    [107] T. Tamanuki, H. Ito, T. Baba. Thermo-optic beam scanner employing silicon photonic crystal slow-light waveguides. J. Lightwave Technol., 39, 904-911(2021).

    [108] H. Ito, Y. Kusunoki, J. Maeda. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica, 7, 47-52(2020).

    [109] P. Berini. Optical beam steering using tunable metasurfaces. ACS Photon., 9, 2204-2218(2022).

    [110] I. Kim, R. J. Martins, J. Jang. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [111] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [112] J. Lee, S. Jung, P.-Y. Chen. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater., 2, 1057-1063(2014).

    [113] S.-Q. Li, X. Xu, R. M. Veetil. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [114] https://holoeye.com/spatial-light-modulators/. https://holoeye.com/spatial-light-modulators/

    [115] J. Xu, M. Cua, E. H. Zhou. Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array. Opt. Lett., 43, 5255-5258(2018).

    [116] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [117] D. Stellinga, D. B. Phillips, S. P. Mekhail. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395-1399(2021).

    [118] B. Smith, B. Hellman, A. Gin. Single chip lidar with discrete beam steering by digital micromirror device. Opt. Express, 25, 14732-14745(2017).

    [119] G. R. B. E. Römer, P. Bechtold. Electro-optic and acousto-optic laser beam scanners. Phys. Procedia, 56, 29-39(2014).

    [120] B. Li, Q. Lin, M. Li. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature, 620, 316-322(2023).

    [121] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [122] K. Goda, K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [123] K. Nakagawa, A. Iwasaki, Y. Oishi. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

    [124] S. Karpf, C. T. Riche, D. Di Carlo. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat. Commun., 11, 2062(2020).

    [125] Z. Li, Z. Zang, Y. Han. Solid-state FMCW LiDAR with two-dimensional spectral scanning using a virtually imaged phased array. Opt. Express, 29, 16547-16562(2021).

    [126] Z. Zang, Y. Xu, H. Wang. Ultrafast agile optical beam steering based on arrayed diffractive elements. Asia Communications and Photonics Conference, T4D.6(2021).

    [127] R. Qian, K. C. Zhou, J. Zhang. Video-rate high-precision time-frequency multiplexed 3D coherent ranging. Nat. Commun., 13, 1476(2022).

    [128] A. Mahjoubfar, D. V. Churkin, S. Barland. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).

    [129] J. Zhang, R. Qian, K. C. Zhou. Real-time wide-field spectral-scanning FMCW coherent 3D imaging and velocimetry. Opt. Lett., 47, 4064-4067(2022).

    [130] M. Okano, C. Chong. Swept source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt. Express, 28, 23898-23915(2020).

    [131] Z. Li, Z. Zang, H. Fu. Virtually imaged phased-array-based 2D nonmechanical beam-steering device for FMCW LiDAR. Appl. Opt., 60, 2177-2189(2021).

    [132] S. Royo, M. Ballesta-Garcia. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci., 9, 4093(2019).

    [133] R. Roriz, J. Cabral, T. Gomes. Automotive LiDAR technology: a survey. IEEE Trans. Intell. Transp. Syst., 23, 6282-6297(2022).

    [134] C. Zhang, S. Lindner, I. M. Antolovic. A 30-frames/s, 252 × 144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J. Solid-State Circuit, 54, 1137-1151(2019).

    [135] https://velodynelidar.com/products/ultra-puck/. https://velodynelidar.com/products/ultra-puck/

    [136] https://ouster.com/products/scanning-lidar/os2-sensor/. https://ouster.com/products/scanning-lidar/os2-sensor/

    [137] https://www.robosense.ai/en/resources-19. https://www.robosense.ai/en/resources-19

    [138] A. Li, X. Liu, J. Sun. Risley-prism-based multi-beam scanning LiDAR for high-resolution three-dimensional imaging. Opt. Laser Eng., 150, 106836(2022).

    [139] D. Morrison, S. Kennedy, D. Delic. A 64 × 64 SPAD flash LIDAR sensor using a triple integration timing technique with 1.95  mm depth resolution. IEEE Sens. J., 21, 11361-11373(2021).

    [140] D. Hanto, H. Pratomo, A. Rianaris. Time of flight lidar employing dual-modulation frequencies switching for optimizing unambiguous range extension and high resolution. IEEE Trans. Instrum. Meas., 72, 72001408(2023).

    [141] C. S. Bamji, S. Mehta, B. Thompson. IMpixel 65nm BSI 320MHz demodulated TOF Image sensor with 3  µm global shutter pixels and analog binning. International Solid–State Circuits Conference (ISSCC), 94-96(2018).

    [142] M.-S. Keel, Y.-G. Jin, Y. Kim. A VGA indirect time-of-flight CMOS image sensor with 4-tap 7-μm global-shutter pixel and fixed-pattern phase noise self-compensation. IEEE J. Solid-State Circuit, 55, 889-897(2020).

    [143] M.-S. Keel, D. Kim, Y. Kim. 7.1  A 4-tap 3.5  μm 1.2  Mpixel indirect time-of-flight CMOS image sensor with peak current mitigation and multi-user interference cancellation. IEEE International Solid-State Circuits Conference (ISSCC), 106-108(2021).

    [144] P. Fankhauser, M. Bloesch, D. Rodriguez. Kinect v2 for mobile robot navigation: evaluation and modeling. International Conference on Advanced Robotics (ICAR), 388-394(2015).

    [145] https://www.neuvition.com/products/titan-s2.html. https://www.neuvition.com/products/titan-s2.html

    [146] https://thinklucid.com/helios-time-of-flight-tof-camera/?gclid=EAIaIQobChMI5amz2eaM_gIVAGUPAh3dGANZEAMYASAAEgL_1PD_BwE. https://thinklucid.com/helios-time-of-flight-tof-camera/?gclid=EAIaIQobChMI5amz2eaM_gIVAGUPAh3dGANZEAMYASAAEgL_1PD_BwE

    [147] https://store.dji.com/product/livox-mid?vid=48991&set_region=US&from=store-nav. https://store.dji.com/product/livox-mid?vid=48991&set_region=US&from=store-nav

    [148] A. Lukashchuk, J. Riemensberger, M. Karpov. Megapixel per second hardware efficient LiDAR based on microcombs. Conference on Lasers and Electro-Optics (CLEO), 1-2(2021).

    [149] G. Kim, Y. Park. LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express, 24, 23810-23828(2016).

    [150] T. Fersch, R. Weigel, A. Koelpin. A CDMA modulation technique for automotive time-of-flight LiDAR systems. IEEE Sens. J., 17, 3507-3516(2017).

    [151] X. Yang, L. Hao, Y. Wang. Adjustable higher SNR and long-range 3D-imaging cluster lidar based on a coded full-waveform technique. Appl. Opt., 58, 4671-4677(2019).

    [152] Z. Zang, Z. Li, Y. Luo. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photon., 7, 046102(2022).

    Zhi Li, Yaqi Han, Lican Wu, Zihan Zang, Maolin Dai, Sze Yun Set, Shinji Yamashita, Qian Li, H. Y. Fu, "Towards an ultrafast 3D imaging scanning LiDAR system: a review," Photonics Res. 12, 1709 (2024)
    Download Citation