• Photonics Research
  • Vol. 3, Issue 6, 329 (2015)
Huacun Wang1、2, Qin Chen1、*, Long Wen1, Shichao Song1, Xin Hu1, and Gaiqi Xu1
Author Affiliations
  • 1Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • 2Department of Electronic Information Materials, Shanghai Leading Academic Disciplines, Shanghai University, Shanghai 200072, China
  • show less
    DOI: 10.1364/PRJ.3.000329 Cite this Article Set citation alerts
    Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, Gaiqi Xu. Titanium-nitride-based integrated plasmonic absorber/ emitter for solar thermophotovoltaic application[J]. Photonics Research, 2015, 3(6): 329 Copy Citation Text show less
    References

    [1] W. Shockley, H. J. Queisser. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 32, 510-519(1961).

    [2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop. Solar cell efficiency tables (Version 45). Prog. Photovoltaics, 23, 1-9(2015).

    [3] W. Spirkl, H. Ries. Solar thermophotovoltaics: an assessment. J. Appl. Phys., 57, 4409-4414(1985).

    [4] T. J. Coutts. A review of progress in thermophotovoltaic generation of electricity. Renew. Sustain. Energ. Rev., 3, 77-184(1999).

    [5] U. Buskies. The efficiency of coal-fired combined-cycle powerplants. Appl. Therm. Eng., 16, 959-974(1996).

    [6] W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, I. Celanovic. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc. Natl. Acad. Sci. USA, 110, 5309-5314(2013).

    [7] E. Rephaeli, S. Fan. Tungsten black absorber for solar light with wide angular operation range. Appl. Phys. Lett., 92, 211107(2008).

    [8] E. Rephaeli, S. Fan. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express, 17, 15145-15159(2009).

    [9] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express, 16, 7181-7188(2008).

    [10] A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, E. N. Wang. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol., 9, 126-130(2014).

    [11] Y. X. Cui, K. H. Fung, J. Xu, H. J. Ma, Y. Jin, S. L. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [12] Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang. A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett., 99, 253101(2011).

    [13] K. B. Alici, A. B. Turhan, C. M. Soukoulis, E. Ozbay. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. Opt. Express, 19, 14260-14267(2011).

    [14] S. Molesky, C. J. Dewalt, Z. Jacob. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express, 21, A96-A110(2013).

    [15] X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [16] L. Wen, F. H. Sun, Q. Chen. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells. Appl. Phys. Lett., 104, 151106(2014).

    [17] L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, Y. Yu. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting. Sci. Rep., 4, 7036(2014).

    [18] R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater., 21, 3504-3509(2009).

    [19] V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman. Light trapping in ultrathin plasmonic solar cells. Opt. Express, 18, A237-A245(2010).

    [20] C. Wu, G. Shvets. Design of metamaterial surfaces with broadband absorbance. Opt. Lett., 37, 308-310(2012).

    [21] B. Jia, X. Chen, J. K. Saha, Q. Qiao, Y. Wang, Z. Shi, M. Gu. Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules. Photon. Res., 1, 22-27(2013).

    [22] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2, 517(2011).

    [23] Q. Jiang, S. Zhang, M. Zhao. Size-dependent melting point of noble metals. Mater. Chem. Phys., 82, 225-227(2003).

    [24] V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater., 4, 1400334(2014).

    [25] C. H. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt., 14, 024005(2012).

    [26] J. Fleming, S. Lin, I. El-Kady, R. Biswas, K. Ho. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 417, 52-55(2002).

    [27] K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun., 4, 2630(2013).

    [28] G. V. Naik, J. Kim, A. Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express, 1, 1090-1099(2011).

    [29] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express, 2, 478-489(2012).

    [30] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [31] M. Cortie, J. Giddings, A. Dowd. Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology, 21, 115201(2010).

    [32] Y. Yu, Q. Chen, L. Wen, X. Hu, H.-F. Zhang. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters. Opt. Express, 23, 21994-22003(2015).

    [33] D. F. DeMeo, N. Pfeister, C. M. Shemelya, T. Vandervelde. Metamaterial selective emitters for photodiodes. Proc. SPIE, 8982, 89820J(2014).

    [34]

    [35] N. P. Harder, P. Wurfel. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol., 18, S151-S157(2003).

    [36] M. Albooyeh, C. R. Simovski. Huge local field enhancement in perfect plasmonic absorbers. Opt. Express, 20, 21888-21895(2012).

    [37] S. Akhavan, K. Gungor, E. Mutlugun, H. V. Demir. Plasmonic light-sensitive skins of nanocrystal monolayers. Nanotechnology, 24, 155201(2013).

    [38] H. X. Deng, T. C. Wang, J. Gao, X. D. Yang. Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt., 16, 035102(2014).

    CLP Journals

    [1] Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, Ekmel Ozbay. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth[J]. Photonics Research, 2018, 6(3): 168

    Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, Gaiqi Xu. Titanium-nitride-based integrated plasmonic absorber/ emitter for solar thermophotovoltaic application[J]. Photonics Research, 2015, 3(6): 329
    Download Citation