• Photonics Research
  • Vol. 6, Issue 10, C1 (2018)
Meng Liu1、2, Rui Tang1, Ai-Ping Luo1、2, Wen-Cheng Xu1、2、3, and Zhi-Chao Luo1、2、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China
  • 2Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and Devices, South China Normal University, Guangzhou 510006, China
  • 3e-mail: xuwch@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.0000C1 Cite this Article Set citation alerts
    Meng Liu, Rui Tang, Ai-Ping Luo, Wen-Cheng Xu, Zhi-Chao Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers[J]. Photonics Research, 2018, 6(10): C1 Copy Citation Text show less
    References

    [1] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [2] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [3] F. W. Wise, A. Chong, W. Renninger. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev., 2, 58-73(2008).

    [4] D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, D. C. Rogers. Nonlinear optics for high-speed digital information processing. Science, 286, 1523-1528(1999).

    [5] Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, R. A. Hogg. 1.55  μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Sci. Rep., 2, 477(2012).

    [6] A. Martinez, S. Yamashita. Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes. Opt. Express, 19, 6155-6163(2011).

    [7] M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sørensen, P. L. Christiansen, P. A. Andrekson. Passive mode locking by dissipative four-wave mixing. J. Opt. Soc. Am. B, 15, 1315-1321(1998).

    [8] S. M. Zhang, F. Y. Lu, X. Y. Dong, P. Shum, X. F. Yang, X. Q. Zhou, Y. D. Gong, C. Lu. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser. Opt. Lett., 30, 2852-2854(2005).

    [9] J. Schröder, S. Coen, F. Vanholsbeeck, T. Sylvestre. Passively mode-locked Raman fiber laser with 100  GHz repetition rate. Opt. Lett., 31, 3489-3491(2006).

    [10] J. Schröder, T. D. Vo, B. J. Eggleton. Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640  GHz. Opt. Lett., 34, 3902-3904(2009).

    [11] D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, F. Wang. Flexible high-repetition-rate ultrafast fiber laser. Sci. Rep., 3, 3223(2013).

    [12] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 3, 765(2012).

    [13] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [14] I. S. Grudinin, N. Yu, L. Maleki. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett., 34, 878-880(2009).

    [15] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2010).

    [16] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 4, 41-45(2010).

    [17] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [18] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line shaping of on-chip microring resonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [19] A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [20] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [21] A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt. Express, 20, 27355-27363(2012).

    [22] S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, Y. Lai. 250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring. IEEE Photon. J., 5, 1502107(2013).

    [23] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, A. L. Gaeta. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express, 21, 1335-1343(2013).

    [24] L. G. Yang, S. S. Jyu, C. W. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, Y. Lai. A 110  GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator. Laser Phys. Lett., 11, 065101(2014).

    [25] W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, W. Zhao. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photon., 4, 1677-1683(2017).

    [26] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [27] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [28] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [29] L. Li, Y. Yu, G. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Hui Chen, Y. Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372-377(2014).

    [30] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253(2011).

    [31] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov. Coherent nonlinear optical response of graphene. Phys. Rev. Lett., 105, 097401(2010).

    [32] R. Wang, H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, H. Zhao. Third-harmonic generation in ultrathin films of MoS2. ACS Appl. Mater. Interfaces, 6, 314-318(2014).

    [33] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang. Third order nonlinear optical property of Bi2Se3. Opt. Express, 21, 2072-2082(2013).

    [34] Y. Q. Ge, S. Chen, Y. J. Xu, Z. L. He, Z. M. Liang, Y. X. Chen, Y. F. Song, D. Y. Fan, K. Zhang, H. Zhang. Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C, 5, 6129-6135(2017).

    [35] X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2017).

    [36] Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic layer graphene as saturable absorber for ultrafast pulsed laser. Adv. Funct. Mater., 19, 3077-3083(2009).

    [37] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [38] H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, H. Zhang. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt. Lett., 39, 4591-4594(2014).

    [39] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 40, 1374-1377(2015).

    [40] A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, Z. C. Luo. Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited]. Photon. Res., 3, A69-A78(2015).

    [41] R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, E. J. R. Kelleher. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives. Photon. Res., 3, A30-A42(2015).

    [42] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express, 23, 154-164(2015).

    [43] D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, J. Zhao. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photon. Res., 3, A43-A46(2015).

    [44] Y. Chen, M. Wu, P. H. Tang, S. Q. Chen, J. Du, G. B. Jiang, Y. Li, C. J. Zhao, H. Zhang, S. C. Wen. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode locked by a topological insulator based saturable absorber. Laser Phys. Lett., 11, 055101(2014).

    [45] P. G. Yan, R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang, S. C. Ruan. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photon. Technol. Lett., 27, 951-954(2015).

    [46] D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 5, 15899(2015).

    [47] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [48] Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, H. Zhang. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 23, 20030-20039(2015).

    [49] Z. Q. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, L. Chen. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers. J. Lightwave Technol., 29, 2732-2739(2011).

    [50] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, P. Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37, 1856-1858(2012).

    [51] R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C. Ferrari, A. Hartschuh. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy. Nano Lett., 15, 4968-4972(2015).

    [52] Y. Wu, B. C. Yao, Q. Y. Feng, X. L. Cao, X. Y. Zhou, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, Y. F. Chen, K. S. Chiang. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photon. Res., 3, A64-A68(2015).

    [53] G. Brambilla, V. Finazzi, D. J. Richardson. Ultra-low-loss optical fiber nanotapers. Opt. Express, 12, 2258-2263(2004).

    [54] K. Kashiwagi, S. Yamashita. Deposition of carbon nanotubes around microfiber via evanescent light. Opt. Express, 17, 18364-18370(2009).

    [55] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 38, 5212-5215(2013).

    [56] O. Schwelb. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview. J. Lightwave Technol., 22, 1380-1394(2004).

    [57] X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett., 88, 223501(2006).

    [58] M. Nakazawa, K. Tamura, E. Yoshida. Supermode noise suppression in a harmonically mode-locked fibre laser by self-phase modulation and spectral filtering. Electron. Lett., 32, 461-463(1996).

    [59] E. Yoshida, M. Nakazawa. Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser. Opt. Lett., 22, 1409-1411(1997).

    [60] J. Schröder, D. Alasia, T. Sylvestre, S. Coen. Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser. J. Opt. Soc. Am. B, 25, 1178-1186(2008).

    [61] X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. Zhang, L. Hu. Demonstration of microfiber knot laser. Appl. Phys. Lett., 89, 143513(2006).

    [62] W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, Z. M. Yang. Narrow linewidth single frequency microfiber laser. Opt. Lett., 37, 4323-4325(2012).

    CLP Journals

    [1] Han Zhang, Qiaoliang Bao, Zhipei Sun. Introduction to two-dimensional layered materials for ultrafast lasers[J]. Photonics Research, 2018, 6(10): TDL1

    [2] Xuanjuan Chen, Yuxin Gao, Jiamin Jiang, Meng Liu, Aiping Luo, Zhichao Luo, Wencheng Xu. High-repetition-rate pulsed fiber laser based on virtually imaged phased array[J]. Chinese Optics Letters, 2020, 18(7): 071403

    [3] Xinyu Wang, Peng Xie, Weiqiang Wang, Yang Wang, Zhizhou Lu, Leiran Wang, Sai T. Chu, Brent E. Little, Wei Zhao, Wenfu Zhang. Program-controlled single soliton microcomb source[J]. Photonics Research, 2021, 9(1): 66

    [4] Qing Wu, Yunzheng Wang, Weichun Huang, Cong Wang, Zheng Zheng, Meng Zhang, Han Zhang. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation[J]. Photonics Research, 2020, 8(7): 1140

    [5] Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, Han Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78

    [6] Yu Xie, Dawei Cai, Hao Wu, Jing Pan, Ning Zhou, Chenguang Xin, Shaoliang Yu, Pan Wang, Xiaoshun Jiang, Jianrong Qiu, Xin Guo, Limin Tong. Mid-infrared chalcogenide microfiber knot resonators[J]. Photonics Research, 2020, 8(4): 616

    [7] Zi-xuan Ding, Zi-nan Huang, Ye Chen, Cheng-bo Mou, Yan-qing Lu, Fei Xu. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator[J]. Advanced Photonics, 2020, 2(2): 026002

    Meng Liu, Rui Tang, Ai-Ping Luo, Wen-Cheng Xu, Zhi-Chao Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers[J]. Photonics Research, 2018, 6(10): C1
    Download Citation