• Advanced Photonics
  • Vol. 3, Issue 1, 015002 (2021)
Yong Tan1, Hang Zhao1, Rui Zhang2, Yuejin Zhao1、*, Cunlin Zhang3, Xi-Cheng Zhang4, and Liangliang Zhang3、*
Author Affiliations
  • 1Beijing Institute of Technology, School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instruments and Technology, Beijing, China
  • 2Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
  • 3Capital Normal University, Beijing Advanced Innovation Center for Imaging Technology and Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, Beijing, China
  • 4University of Rochester, Institute of Optics, Rochester, New York, United States
  • show less
    DOI: 10.1117/1.AP.3.1.015002 Cite this Article Set citation alerts
    Yong Tan, Hang Zhao, Rui Zhang, Yuejin Zhao, Cunlin Zhang, Xi-Cheng Zhang, Liangliang Zhang. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy[J]. Advanced Photonics, 2021, 3(1): 015002 Copy Citation Text show less
    References

    [1] M. C. Bellissent-Funel et al. Water determines the structure and dynamics of proteins. Chem. Rev., 116, 7673-7697(2016).

    [2] M. Heyden, D. J. Tobias. Spatial dependence of protein-water collective hydrogen-bond dynamics. Phys. Rev. Lett., 111, 218101(2013).

    [3] R. Laenen, T. Roth, A. Laubereau. Novel precursors of solvated electrons in water: evidence for a charge transfer process. Phys. Rev. Lett., 85, 50-53(2000).

    [4] V. Birkedal et al. Observation of a persistent infrared absorption following two photon ionization of liquid water. Chem. Phys., 328, 119-124(2006).

    [5] J. Savolainen et al. Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem., 6, 697-701(2014).

    [6] F. Perakis et al. Vibrational spectroscopy and dynamics of water. Chem. Rev., 116, 7590-7607(2016).

    [7] R. M. Young, D. M. Neumark. Dynamics of solvated electrons in clusters. Chem. Rev., 112, 5553-5577(2012).

    [8] V. H. Vilchiz et al. Map for the relaxation dynamics of hot photoelectrons injected into liquid water via anion threshold photodetachment and above threshold solvent ionization. J. Phys. Chem. A, 105, 1711-1723(2001).

    [9] E. Knoesel et al. Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy. Phys. Rev. Lett., 86, 340-343(2001).

    [10] C. Pepin et al. Observation of a continuous spectral shift in the solvation kinetics of electrons in neat liquid deuterated water. J. Phys. Chem. A, 101, 4351-4360(1997).

    [11] A. Migus, Y. Gauduel, J. L. Martin. Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime. Phys. Rev. Lett., 58, 1559-1562(1987).

    [12] H. Iglev et al. Hydrogen atom transfer from water or alcohols activated by presolvated electrons. J. Phys. Chem. Lett., 6, 986-992(2015).

    [13] R. Lian, R. A. Crowell, I. A. Shkrob. Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and [14] S. Champeaux, L. Bergé. Femtosecond pulse compression in pressure-gas cells filled with argon. Phys. Rev. E, 68, 066603(2003).

    [15] S. A. Skobelev, A. V. Kim, O. Willi. Generation of high-energy few-cycle laser pulses by using the ionization-induced self-compression effect. Phys. Rev. Lett., 108, 123904(2012).

    [16] G. Stibenz, N. Zhavoronkov, G. Steinmeyer. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett., 31, 274-276(2006).

    [17] K. Y. Kim, J. H. Glownia, A. J. Taylor. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express, 15, 4577-4584(2007).

    [18] T. Wu et al. Excitation-wavelength-dependent terahertz wave modulation via preformed air plasma. Appl. Phys. Lett., 112, 171106(2018).

    [19] A. Gorodetsky et al. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. A, 89, 033838(2014).

    [20] L. Zhang et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys. Rev. Lett., 119, 235001(2017).

    [21] M. Kolesik, J. V. Moloney. Self-healing femtosecond light filaments. Opt. Lett., 29, 590-592(2004).

    [22] R. W. Boyd. Nonlinear Optics(2003).

    [23] S. Minardi et al. Time-resolved refractive index and absorption mapping of light-plasma filaments in water. Opt. Lett., 33, 86-88(2008).

    [24] A. Vogel, S. Busch, U. Parlitz. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am., 100, 148-165(1996).

    [25] L. Zhang et al. Strong terahertz radiation from a liquid-water line. Phys. Rev. Appl., 12, 014005(2019).

    [26] E. Yiwen et al. Terahertz wave generation from liquid water films via laser-induced breakdown. Appl. Phys. Lett., 113, 181103(2018).

    [27] Q. Jin et al. Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett., 111, 071103(2017).

    [28] I. Dey et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat. Commun., 8, 1184(2017).

    [29] M. Shalaby, C. P. Hauri. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun., 6, 5976(2015).

    [30] A. Leitenstorfer et al. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett., 74, 1516-1518(1999).

    [31] Q. Wu, X. C. Zhang. Free-space electro-optics sampling of mid-infrared pulses. Appl. Phys. Lett., 71, 1285-1286(1997).

    [32] H. Zhao et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light Sci. Appl., 9, 136(2020).

    [33] M. J. Tauber et al. Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy. Rev. Sci. Instrum., 74, 4958-4960(2003).

    [34] T. Wang, P. Klarskov, P. U. Jepsen. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film. IEEE Trans. Terahertz Sci. Technol., 4, 425-431(2014).

    [35] J. Das, M. Yamaguchi. Terahertz wave excitation from preexisting air plasma. J. Opt. Soc. Am. B, 30, 1595-1600(2013).

    [36] J. Zhao et al. Wavelength scaling of terahertz wave absorption via preformed air plasma. IEEE Trans. Terahertz Sci. Technol., 6, 846-850(2016).

    [37] J. Xu et al. 0.15–3.72 THz absorption of aqueous salts and saline solutions. Appl. Phys. Lett., 90, 031908(2007).

    [38] H. R. Zelsmann. Temperature dependence of the optical constants for liquid H2O and . J. Mol. Struct., 350, 95-114(1995). https://doi.org/10.1016/0022-2860(94)08471-S

    [39] L. D. Siebbeles et al. A subpicosecond pump-probe laser study of ionization and geminate charge recombination kinetics in alkane liquids. J. Chem. Phys., 107, 9339-9347(1997).

    [40] J. Noack, A. Vogel. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron., 35, 1156-1167(1999).

    [41] F. Docchio. Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. Europhys. Lett., 6, 407-412(1988).

    [42] E. Knoesel et al. Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy. J. Chem. Phys., 121, 394-404(2004).

    [43] Z. Mics, F. Kadlec, P. Kužel. Nonresonant ionization of oxygen molecules by femtosecond pulses: plasma dynamics studied by time-resolved terahertz spectroscopy. J. Chem. Phys., 123, 104310(2005).

    [44] L. D. Jacobson, J. M. Herbert. Theoretical characterization of four distinct isomer types in hydrated-electron clusters, and proposed assignments for photoelectron spectra of water cluster anions. J. Am. Chem. Soc., 133, 19889-19899(2011).

    Yong Tan, Hang Zhao, Rui Zhang, Yuejin Zhao, Cunlin Zhang, Xi-Cheng Zhang, Liangliang Zhang. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy[J]. Advanced Photonics, 2021, 3(1): 015002
    Download Citation