• Matter and Radiation at Extremes
  • Vol. 3, Issue 3, 135 (2018)
Kai Du*, Meifang Liu, Tao Wang, Xiaoshan He, Zongwei Wang, and Juan Zhang
Author Affiliations
  • Research Center of Laser Fusion, CAEP, P.O. Box 919-987, Mianyang, Sichuan 621900, China
  • show less
    DOI: 10.1016/j.mre.2017.12.005 Cite this Article
    Kai Du, Meifang Liu, Tao Wang, Xiaoshan He, Zongwei Wang, Juan Zhang. Recent progress in ICF target fabrication at RCLF[J]. Matter and Radiation at Extremes, 2018, 3(3): 135 Copy Citation Text show less
    References

    [1] A.M. Dunne, HiPER: Technical Background and Conceptual Design Report 2007, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, 2007.

    [2] A.K. Tucker-Schwartz, Z. Bei, R.L. Garrell, T.B. Jones, Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells, Langmuir 26 (2010) 18606-18611.

    [3] N. Antipa, S. Baxamusa, E. Buice, A. Conder, M. Emerich, et al., Automated ICF capsule characterization using confocal surface profilometry, Fusion Sci. Technol. 63 (2013) 151-159.

    [4] K. Nagai, H. Yang, T. Norimatsu, H. Azechi, F. Belkada, et al., Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project, Nucl. Fusion 49 (2009) 095028.

    [5] P.R. Paguio, S.P. Paguio, C.A. Frederick, A. Nikroo, O. Acenas, Improving the yield of target quality Omega size PAMS mandrels by modifying emulsion components, Fusion Sci. Technol. 49 (2006) 743-749.

    [6] T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles, Curr. Opin. Colloid Interface Sci. 25 (2016) 1-12.

    [7] S. Waheed, J.M. Cabot, N.P. Macdonald, T. Lewis, R.M. Guijt, 3D printed microfluidic devices: enablers and barriers, Lab Chip 16 (2016) 1993-2013.

    [8] L.R. Shang, Y. Cheng, Y.J. Zhao, Emerging droplet microfluidics, Chem. Rev. 117 (2017) 7964-8040.

    [9] X. Qu, Y. Wang, Dynamics of concentric and eccentric compound droplets suspended in extensional flows, Phys. Fluids 24 (2012) 123302-123321.

    [10] M.F. Liu, Y.Y. Liu, J. Li, S.F. Chen, J. Li, et al., Improvement of sphericity of thick-walled polystyrene shell, Colloids Surf. A 484 (2015) 463-470.

    [11] M.F. Liu, L. Su, J. Li, S.F. Chen, Y.Y. Liu, Investigation of spherical and concentric mechanism of compound droplets, Matter Radiat. Extrems 1 (2016) 213-223.

    [12] M.F. Liu, S.F. Chen, X.B. Qi, B. Li, R.T. Shi, et al., Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching, Chem. Eng. J. 241 (2014) 466-476.

    [13] M.F. Liu, Y.Q. Zheng, J. Li, S.F. Chen, Y.Y. Liu, et al., Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells, Nucl. Fusion 57 (2017) 016018.

    [14] A. Nikroo, J.M. Pontelandolfo, E.R. Castillo, Coating and mandrel effects on fabrication of glow discharge polymer NIF scale indirect drive capsules, Fusion Sci. Technol. 41 (2002) 220-225.

    [15] S.A. Letts, D.W. Myers, L.A. Witt, Ultrasmooth plasma polymerized coatings for laser fusion targets, J. Vac. Sci. Technol 19 (1981) 739-742.

    [16] D.G. Czechowicz, E.R. Castillo, A. Nikroo, Composition and structural studies of glow discharge polymer coatings, Fusion Sci. Technol. 41 (2002) 188-192.

    [17] A. Nikroo, D.G. Czechowicz, E.R. Castillo, J.M. Pontelandolfo, Recent progress in fabrication of high-strength glow discharge polymer shells by optimization of coating parameters, Fusion Sci. Technol. 41 (2002) 214-219.

    [18] M. Theobald, B. Dumay, C. Chicanne, J. Barnouin, O. Legaie, et al., Roughness optimization at high modes for GDP CHx microshells, Fusion Sci. Technol. 45 (2004) 176-179.

    [19] K.C. Chen, R.C. Cook, H. Huang, S.A. Letts, A. Nikroo, Fabrication of graded germanium-doped CH shells, Fusion Sci. Technol. 49 (2006) 750-755.

    [20] L. Zhang, X.S. He, G. Chen, T. Wang, Y.J. Tang, et al., Effects of rf power on chemical composition and surface roughness of glow discharge polymer films, Appl. Surf. Sci. 366 (2016) 499-505.

    [21] J.P. Booth, G. Cunge, CFx radical production and loss in a CF4 reactive ion etching plasma: fluorine rich conditions, J. Appl. Phys. 85 (1999) 3097-3102.

    [22] G. Chen, L. Zhang, X.S. He, Z.B. He, Y.J. Tang, Effect of the gas flow ratio of T2B/H2 on the composition and surface roughness of glow discharge polymer films, Atomic Energy Sci. Technol. 9 (2016) 1658-1663.

    [23] R.W. Luo, A.L. Greenwood, A. Nikroo, C. Chen, Properties of silicondoped GDP shells used for cryogenic implosions at OMEGA, Fusion Sci. Technol. 55 (2009) 456-460.

    [24] R. Brusasco, M. Saculla, R. Cook, Preparation of germanium doped plasma polymerized coatings as inertial confinement fusion target, J. Vac. Sci. Technol. Vac. Surf. Films 13 (1995) 948-951.

    [25] S.A. Letts, E.M. Fearon, S.R. Buckley, M.D. Saculla, L.M. Allison, et al., Fabrication of polymer shells using a decomposable mandrel, Fusion Technol. 28 (1995) 1797-1802.

    [26] M.L. Hoppe, Large glass shells from GDP shells, Fusion Technol. 38 (2000) 42-48.

    [27] M.L. Hoppe, Recent developments in making glass shells from silicon doped GDP shells, Fusion Sci. Technol. 41 (2002) 234-237.

    [28] W. Xu, T. Wang, Z.B. He, Z.W. Wu, Fabrication of hollow glass microspheres for inertial confinement fusion targets depolymerizable mandrel method, High Power Laser Part. Beams 27 (2015) 062008-062015.

    [29] W. Xu, T. Wang, Z.W. Wu, Z.B. He, Influence of pressure on structure and properties of hollow glass microspheres, High Power Laser Part Beams 27 (2015) 122004-122010.

    [30] W. Rensel, T. Henderson, D. Solomon, Novel method for measuring total pressure of fuel gas in hollow, glass microshell pellet, Rev. Sci. Inst. 46 (1975) 787-789.

    [31] M. Salazar, P. Gobby, R. Watt, Pressure testing of micro balloons by bursting, Fusion Technol. 38 (2000) 136-138.

    [32] J. Sanchez, R. Upadhye, Non-destructive method for measuring the D2/ DT fill pressure and permeability for direct drive plastic shells, Nucl. Fusion 31 (1991) 459-464.

    [33] S. Ohira, H. Akamura, S. Konishi, T. Hayashi, K. Okuno, et al., On-line tritium process gas analysis laser Raman spectroscopy at TSTA, Fusion Technol. 21 (1992) 465-470.

    [34] H. Deckman, G. Halpern, Fuel content characterization and pressure retention measurements of DT-filled laser fusion microballoon targets, J. Appl. Phys. 50 (1979) 132-139.

    [35] D. Steinman, E. Alfonso, M. Hoppe, Developments in capsule gas fill half-life determination, Fusion Sci. Technol. 5 (2007) 544-546.

    [36] Z. Wang, D. Gao, X. Ma, J. Meng, White-light interferometry for measuring fuel pressure in ICF polymer-microsphere targets, Fusion Sci. Technol. 66 (2014) 432-437.

    Kai Du, Meifang Liu, Tao Wang, Xiaoshan He, Zongwei Wang, Juan Zhang. Recent progress in ICF target fabrication at RCLF[J]. Matter and Radiation at Extremes, 2018, 3(3): 135
    Download Citation