• Acta Physica Sinica
  • Vol. 69, Issue 4, 040501-1 (2020)
Yong-Xia Yang1、2, Yu-Ye Li1、2、*, and Hua-Guang Gu3
Author Affiliations
  • 1College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China
  • 2Institute of Applied Mathematics, Chifeng University, Chifeng 024000, China
  • 3School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.7498/aps.69.20191509 Cite this Article
    Yong-Xia Yang, Yu-Ye Li, Hua-Guang Gu. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex[J]. Acta Physica Sinica, 2020, 69(4): 040501-1 Copy Citation Text show less
    The (h, V) trajectory of the single neuron at different values: (a) ; (b) ; (c) ; (d) .
    Fig. 1. The (h, V) trajectory of the single neuron at different values: (a) ; (b) ; (c) ; (d) .
    Bifurcation of the single neuron model with increasing : (a) Bifurcations of ISIs; (b) the enlargement of ISIs within the square at the down-left corner of fig (a).
    Fig. 2. Bifurcation of the single neuron model with increasing : (a) Bifurcations of ISIs; (b) the enlargement of ISIs within the square at the down-left corner of fig (a).
    Bifurcations of the fast-subsystem of the single neuron with respect to h when .
    Fig. 3. Bifurcations of the fast-subsystem of the single neuron with respect to h when .
    The fast-slow variable dissection of bursting of single neuron at different values: (a) ; (b) ; (c) ; (d) .
    Fig. 4. The fast-slow variable dissection of bursting of single neuron at different values: (a) ; (b) ; (c) ; (d) .
    Transitions with respect to of coupled neurons model. The same initial values: (a1) The mean values of coupling current ; (a2) maximum spike phase difference ; (a3) maximum burst phase difference ; (a4) coefficient ρ; (a5) ISIs of neuron 1. Different initial values: (b1) The mean values of coupling current ; (b2) maximum spike phase difference ; (b3) maximum burst phase difference ; (b4) coefficient ρ; (b5) ISIs of neuron 1.
    Fig. 5. Transitions with respect to of coupled neurons model. The same initial values: (a1) The mean values of coupling current ; (a2) maximum spike phase difference ; (a3) maximum burst phase difference ; (a4) coefficient ρ; (a5) ISIs of neuron 1. Different initial values: (b1) The mean values of coupling current ; (b2) maximum spike phase difference ; (b3) maximum burst phase difference ; (b4) coefficient ρ; (b5) ISIs of neuron 1.
    Membrane potential (top) and coupling current (low) of neurons 1 (red) and 2 (blue) with the same initial values at different values (Insert figure: the enlargement of bursting): (a) ; (b) ; (c) ; (d) .
    Fig. 6. Membrane potential (top) and coupling current (low) of neurons 1 (red) and 2 (blue) with the same initial values at different values (Insert figure: the enlargement of bursting): (a) ; (b) ; (c) ; (d) .
    Membrane potential V (top) and coupling current (low) of neurons 1 (red) and 2 (blue) with different initial values at different (Insert figure: the enlargement of bursting): (a) = 0.35 nS; (b) = 1.5 nS; (c) = 2.5 nS; (d) = 5.0 nS; (e) = 18.0 nS.
    Fig. 7. Membrane potential V (top) and coupling current (low) of neurons 1 (red) and 2 (blue) with different initial values at different (Insert figure: the enlargement of bursting): (a) = 0.35 nS; (b) = 1.5 nS; (c) = 2.5 nS; (d) = 5.0 nS; (e) = 18.0 nS.
    Bifurcations of the fast-subsystem of the two coupled neurons with respect to h when = 1.5 nS (Insert figure: the enlargement): (a) Equilibrium points; (b) equilibrium points and limit cycle.
    Fig. 8. Bifurcations of the fast-subsystem of the two coupled neurons with respect to h when = 1.5 nS (Insert figure: the enlargement): (a) Equilibrium points; (b) equilibrium points and limit cycle.
    The fast-slow variable dissection of neuron 1 for different initial values at different values (Insert figure: the enlargement): (a) = 0.35 nS; (b) = 2.5 nS; (c) = 5.0 nS; (d) = 18.0 nS.
    Fig. 9. The fast-slow variable dissection of neuron 1 for different initial values at different values (Insert figure: the enlargement): (a) = 0.35 nS; (b) = 2.5 nS; (c) = 5.0 nS; (d) = 18.0 nS.
    The fast-slow variable dissection of neuron 1 for different initial values at different values (Insert figure: the enlargement): (a)= 0.35 nS; (b) = 1.5 nS; (c) and (d) = 2.5 nS; (e) = 5.0 nS; (f) = 18.0 nS.
    Fig. 10. The fast-slow variable dissection of neuron 1 for different initial values at different values (Insert figure: the enlargement): (a) = 0.35 nS; (b) = 1.5 nS; (c) and (d) = 2.5 nS; (e) = 5.0 nS; (f) = 18.0 nS.
    The anti-phase (purple) and in-phase (green) period-1 spiking: (a) The V-h trajectory; (b) coupling current.
    Fig. 11. The anti-phase (purple) and in-phase (green) period-1 spiking: (a) The V-h trajectory; (b) coupling current.
    (a) Bifurcations of equilibrium points and limit cycle of the fast-subsystem; (b) enlargement of (a); (c) fast-slow variable dissection of anti-phase (purple) and in-phase (green) period-1 spiking; (d) enlargement of anti-phase (purple) and in-phase (green) period-1 spiking in Fig. (c).
    Fig. 12. (a) Bifurcations of equilibrium points and limit cycle of the fast-subsystem; (b) enlargement of (a); (c) fast-slow variable dissection of anti-phase (purple) and in-phase (green) period-1 spiking; (d) enlargement of anti-phase (purple) and in-phase (green) period-1 spiking in Fig. (c).
    参数参数值参数参数值参数参数值参数参数值
    C21 pF$ {\sigma _{ {\rm{m_p} }} } $–6 mV$ {g_{ {\rm{Nap} }} } $2.8 nS${E_{{\rm{Na}}}}$50 mV
    $ {\theta _{ {\rm{m_p} }} } $–40 mV${\sigma _{\rm{m}}}$–5 mV${g_{{\rm{Na}}}}$28 nS${E_{\rm{K}}}$–85 mV
    ${\theta _{\rm{m}}}$–34 mV$\sigma {}_{\rm{h}}$6 mV${g_{\rm{L}}}$2.8 nS${E_{\rm{L}}}$–65 mV
    ${\theta _{\rm{h}}}$–48 mV${\sigma _{\rm{n}}}$–4 mV${g_{ {\text{tonic-e} } } }$0.4 nS${\bar \tau _{\rm{h}}}$10000 ms
    ${\theta _{\rm{n}}}$–29 mV${\sigma _{\rm{s}}}$–5 mV${\varepsilon _{}}$6${\bar \tau _{\rm{n}}}$5 ms
    $\theta {}_{\rm{s}}$–10 mV${\alpha _{\rm{s}}}$–5 mV
    Table 1. [in Chinese]
    关键点h的值
    F1F2subhHCLPC共存区域
    $ {g_{\rm{K} }} = 7.1\;{\rm{nS}} $0.4928–1.67800.21280.32650.4308[0.3265, 0.4308]
    $ {g_{\rm{K} }} = 7.8\;{\rm{nS}} $0.4928–1.66800.28580.34760.4973[0.3476, 0.4928]
    $ {g_{\rm{K} }} = 10.0 \;{\rm{nS}} $0.4928–1.63900.50720.39410.7025[0.3941, 0.4928]
    $ {g_{\rm{K} }} = 25.0 \;{\rm{nS}} $0.4928–1.48001.78800.48491.9240[0.4849, 0.4928]
    Table 2. The values of slow variable h of the bifurcation or key points at different values.
    关键点h的值
    $g_\text{syn-e}$ = 0.35 nS $g_\text{syn-e}$ = 2.5 nS $g_\text{syn-e}$ = 5.0 nS $g_\text{syn-e}$ = 18.0 nS
    F10.48740.49180.49080.4856
    F2–1.6695–1.6759–1.6685–1.7212
    subh10.28170.25650.22590.0746
    subh20.28580.28520.22740.0794
    LPC10.49270.42730.35980.0960
    LPC2\0.31030.2406–0.2504
    LPC3\\\0.0890
    LPC4\\\–0.099
    HC0.3398\\\
    共存区域[0.3398, 0.4927][0.3103, 0.4273][0.2406, 0.3598][0.0960, 0.250]和[0.0890, 0.099]
    Table 3. The slow variable h values of the bifurcation or key points at different values.
    Yong-Xia Yang, Yu-Ye Li, Hua-Guang Gu. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex[J]. Acta Physica Sinica, 2020, 69(4): 040501-1
    Download Citation