• Photonics Research
  • Vol. 12, Issue 10, 2354 (2024)
Daewoon Seong1,†, Sangyeob Han1,†, Yoonseok Kim, Mansik Jeon*, and Jeehyun Kim
Author Affiliations
  • School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.524969 Cite this Article Set citation alerts
    Daewoon Seong, Sangyeob Han, Yoonseok Kim, Mansik Jeon, Jeehyun Kim, "Polarization-insensitive optical coherence tomography using polarization maintaining fiber with a simple optical configuration," Photonics Res. 12, 2354 (2024) Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [2] A. F. Fercher, W. Drexler, C. K. Hitzenberger. Optical coherence tomography-principles and applications. Rep. Prog. Phys., 66, 239(2003).

    [3] W. Drexler, U. Morgner, R. K. Ghanta. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med., 7, 502-507(2001).

    [4] M. Wojtkowski, T. Bajraszewski, I. Gorczyńska. Ophthalmic imaging by spectral optical coherence tomography. Am. J. Ophthalmol., 138, 412-419(2004).

    [5] D. Seong, S. Han, D. Jeon. Dynamic compensation of path length difference in optical coherence tomography by an automatic temperature control system of optical fiber. IEEE Access, 8, 77501-77510(2020).

    [6] H. E. I. Tan, P. L. Santa Maria, P. Wijesinghe. Optical coherence tomography of the tympanic membrane and middle ear: a review. Otolaryngology–Head Neck Surgery, 159, 424-438(2018).

    [7] D. Seong, J. Kwon, D. Jeon. In situ characterization of micro-vibration in natural latex membrane resembling tympanic membrane functionally using optical Doppler tomography. Sensors, 20, 64(2019).

    [8] B. J. Fenner, G. S. Tan, A. C. Tan. Identification of imaging features that determine quality and repeatability of retinal capillary plexus density measurements in OCT angiography. Br. J. Ophthalmol., 102, 509-514(2018).

    [9] Y. Kim, G.-I. Jung, D. Jeon. Non-invasive optical coherence tomography data-based quantitative algorithm for the assessment of residual adhesive on bracket-removed dental surface. Sensors, 21, 4670(2021).

    [10] I. Meglinski, C. Buranachai, L. Terry. Plant photonics: application of optical coherence tomography to monitor defects and rots in onion. Laser Phys. Lett., 7, 307(2010).

    [11] S. A. Saleah, S.-Y. Lee, R. E. Wijesinghe. Optical signal intensity incorporated rice seed cultivar classification using optical coherence tomography. Comput. Electron. Agric., 198, 107014(2022).

    [12] E. Alarousu, R. A. Myllylae, I. P. Gurov. Optical coherence tomography in scattering material for industrial applications. Proc. SPIE, 4595, 223-230(2001).

    [13] D. Seong, D. Jeon, R. E. Wijesinghe. Ultrahigh-speed spectral-domain optical coherence tomography up to 1-MHz A-scan rate using space–time-division multiplexing. IEEE Trans. Instrum. Meas., 70, 4504108(2021).

    [14] G. L. Monroy, J. Won, D. R. Spillman. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. J. Biomed. Opt., 22, 121715(2017).

    [15] J. P. Campbell, E. Nudleman, J. Yang. Handheld optical coherence tomography angiography and ultra–wide-field optical coherence tomography in retinopathy of prematurity. JAMA Ophthalmol., 135, 977-981(2017).

    [16] R. E. Wijesinghe, S.-Y. Lee, N. K. Ravichandran. Optical coherence tomography-integrated, wearable (backpack-type), compact diagnostic imaging modality for in situ leaf quality assessment. Appl. Opt., 56, D108-D114(2017).

    [17] G. J. Tearney, M. E. Brezinski, B. E. Bouma. In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276, 2037-2039(1997).

    [18] P. Herz, Y. Chen, A. Aguirre. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt. Lett., 29, 2261-2263(2004).

    [19] O. M. Carrasco-Zevallos, C. Viehland, B. Keller. Review of intraoperative optical coherence tomography: technology and applications. Biomed. Opt. Express, 8, 1607-1637(2017).

    [20] D. Seong, W. Ki, P. Kim. Virtual intraoperative optical coherence tomography angiography integrated surgical microscope for simultaneous imaging of morphological structures and vascular maps in vivo. Opt. Lasers Eng., 151, 106943(2022).

    [21] M. K. Al-Qaisi, T. Akkin. Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing. Opt. Express, 16, 13032-13041(2008).

    [22] A. Parmar, G. Sharma, K. Singh. Polarization independent optical coherence tomography. IEEE Photonics J., 14, 3916805(2022).

    [23] S. Jiao, M. Ruggeri. Polarization effect on the depth resolution of optical coherence tomography. J. Biomed. Opt., 13, 060503(2008).

    [24] N. Wang, X. Liu, Q. Xiong. Polarization management to mitigate misalignment-induced fringe fading in fiber-based optical coherence tomography. Opt. Lett., 42, 2996-2999(2017).

    [25] B. Vakoc, S. Yun, G. Tearney. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation. Opt. Lett., 31, 362-364(2006).

    [26] A. M. Lee, H. Pahlevaninezhad, V. X. Yang. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography. Opt. Lett., 39, 3638-3641(2014).

    [27] H. Pahlevaninezhad, A. M. Lee, L. Cahill. Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography. Photonics, 1, 283-295(2014).

    [28] D. O. Otuya, G. Sharma, G. J. Tearney. All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch. OSA Contin., 2, 3465-3469(2019).

    [29] E. Götzinger, B. Baumann, M. Pircher. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt. Express, 17, 22704-22717(2009).

    [30] H. Wang, M. K. Al-Qaisi, T. Akkin. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Opt. Lett., 35, 154-156(2010).

    [31] D. P. Davé, T. Akkin, T. E. Milner. Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence. Opt. Lett., 28, 1775-1777(2003).

    [32] S. A. Saleah, D. Seong, S. Han. Integrated quad-scanner strategy-based optical coherence tomography for the whole-directional volumetric imaging of a sample. Sensors, 21, 1305(2021).

    [33] J. Lee, S.-Y. Lee, S. Han. Multi-directional morphological assessment of single bacterial colonies through non-invasive optical imaging. Ann. Biomed. Eng., 48, 3014-3023(2020).

    Daewoon Seong, Sangyeob Han, Yoonseok Kim, Mansik Jeon, Jeehyun Kim, "Polarization-insensitive optical coherence tomography using polarization maintaining fiber with a simple optical configuration," Photonics Res. 12, 2354 (2024)
    Download Citation