• Frontiers of Optoelectronics
  • Vol. 6, Issue 1, 30 (2013)
Xiang ZHOU*
Author Affiliations
  • AT&T Labs-Research, Middletown, NJ 07748, USA
  • show less
    DOI: 10.1007/s12200-012-0298-2 Cite this Article
    Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Frontiers of Optoelectronics, 2013, 6(1): 30 Copy Citation Text show less
    References

    [1] Camera M, Olsson B E, Bruno G. Beyond 100 Gbit/s: System implications towards 400 G and 1 T. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication 2010 Symposium toward 1 Tb/s. 2010, 1-28

    [2] Cole C. Is 1 Tb/s ready for prime time Engineering reality check. In: IEEE Photonics Society Summer Topical, Montreal, Canada, 20Terabit Optical Ethernet, WC1. 1

    [3] Yu J, Zhou X, Huang M-F, Qian D, Ji P N, Wang T, Magill P. 400 Gb/s (4~100 Gb/s) orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28. Optics Express, 2009, 20(17): 17928-17933

    [4] Liu X, Chandrasekhar S, Zhu B, Winzer P J, Gnauck A H, Peckham D W. Transmission of a 448-Gb/s reduced-guard-interval COOFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-Grid ROADMs. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2010, PDPC2

    [5] Chandrasekhar S, Liu X, Zhu B, Peckham D W. Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber. In: Proceedings of the 35th European Conference on Optical Communication. 2009, PDP 2.6

    [6] Winzer P J, Gnauck A H, Chandrasekhar S, Draving S, Evangelista J, Zhu B. Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator. In: Proceedings of 36th European Conference and Exhibition on Optical Communication. 2010, PDP 2.2

    [7] Gnauck A H,Winzer P J, Chandrasekhar S, Liu X, Zhu B, Peckham D W. 10~224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1200 km of fiber. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2010, PDPB8

    [8] Huang Y K, Ip E, Huang M, Zhu B, Ji P N, Shao Y, Peckham D W, Lingle R , Aono Y, Tajima T, Wang T. 10~456 Gb/s DP-16QAM Transmission over 8~100 km of ULAF using Coherent Detection with a 30-GHz Analog-to-Digital Converter. In: Proceedings of the 15th OptoeElectronics and Communications Conference. 2010, PDP3

    [9] Takahashi H, Takeshima K, Morita I, Tanaka H. 400-Gbit/s Optical OFDM Transmission over 80 km in 50-GHz Frequency Grid. In: Proceedings of European Conference on Optical Communication. 2010, Tu.3.C.1

    [10] Zhou X, Nelson L E, Magill P, Isaac R, Zhu B, Peckham DW, Borel P, Carlson K. 8~450 Gb/s, 50 GHz-spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2011, PDPB3

    [11] Zhou X, Nelson L, Magill P, Isaac R, Zhu B, Peckham D W, Borel P, Carlson K. 800 km transmission of 5~450 Gb/s PDM-32QAM on the 50 GHz grid using electrical and optical spectral shaping. In: Proceedings of European Conference and Exposition on Optical Communications. 2011, We.8.B.2

    [12] Zhou X, Nelson L E, Magill P, Isaac R, Zhu B, Peckham DW, Borel P, Carlson K. 1200 km Transmission of 50 GHz spaced, 5~504 Gb/s PDM-32-64 hybrid QAM using Electrical and Optical Spectral Shaping. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2012, OM2A.2

    [13] Kobayashi T, Sano A, Matsuura A, Miyamoto Y, Ishihara K. Nonlinear tolerant long-haul WDM transmission over 1200 km using 538 Gb/s/ch PDM-64QAM SC-FDM signals with pilot tone. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2012, OM2A.5

    [14] Zhou X, Nelson L E, Magill P, Isaac R, Zhu B, Peckham D W, Borel P, Carlson K. High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32-64QAM and training-assisted carrier recovery. Journal of Lightwave Technology, Feburary issue of 2013

    [15] Proakis J G. Digital Communication. 4rd ed. NY: McGraw-Hill, 2001

    [16] Zhou X, Yu J. Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission. Journal of Lightwave Technology, 2009, 27(16): 3641-3653

    [17] Pfau T, Hoffmann S, Noé R. Hardware-efficient coherent digital receiver concept with feed-forward carrier recovery for M-QAM constellations. Journal of Lightwave Technology, 2009, 27(8): 989-999

    [18] Zhou X, Yu J, Huang M F, Shao Y, Wang T, Nelson L, Magill P, Birk M, Borel P I, Peckham D W, Lingle R, Zhu B. 64 Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both preand post-transmission digital signal processing. Journal of Lightwave Technology, 2011, 29(4): 571-577

    [19] Peng W R, Morita I, Tanaka H. Hybrid QAM transmission techniques for single-carrier ultra-dense WDM systems. In: Proceedings of the 16th OptoeElectronics and Communications Conference. 2011, 824-825

    [20] Takahashi H, Morita I, Tanaka H. The impact of the combined 8-QAM and QPSK subcarrier modulation for coherent optical OFDM. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2011, JWA30

    [21] Schmogrow R,Winter M, Meyer M, Hillerkuss D,Wolf S, Baeuerle B, Ludwig A, Nebendahl B, Ben-Ezra S, Meyer J, Dreschmann M, Huebner M, Becker J, Koos C, Freude W, Leuthold J. Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. Optics Express, 2012,1(20): 317-337

    [22] Nelson L E,Woodward S L, Foo S, Moyer M, Yao D, O’Sullivan M. 100 Gb/s dual-carrier DP-QPSK performance after WDM transmission including 50 GHz wavelength selective switches. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2011, NWA2

    [23] Zhou X, Nelson L E, Magill P, Isaac R, Zhu B, Peckham DW, Borel P, Carlson K. PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid. Journal of Lightwave Technology, 2012, 30(4): 553-559

    [24] OIF-ITLA-MSA-01.1, Optical Internetworking Forum, 2005, 91

    [25] Chang F, Onohara K, Mizuochi T. Forward error correction for 100 G transport networks. IEEE Communications Magazine, 2010, 48(3): S48-S55

    [26] Nelson L E, Pan Y, Birk M, Isaac R, Rasmussen C, Givehchi M, Mikkelsen B. WDM performance and multiple-path interference tolerance of a real-time 120 Gbps pol-mux QPSK transceiver with soft decision FEC. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2012, NTh1I.5

    [27] Chang D, Yu F, Xiao Z, Stojanovic N, Hauske F N, Cai Y, Xie C , Li L, Xu X, Xiong Q. LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2012, OW1H.4

    [28] Cai Y. Limit on coding and modulation gains in fiber-optic communication systems. In: Proceedings of Wireless and Optical Communications Conference. 2005, F9

    [29] Zhang G, Nelson L E, Pan Y, Birk M, Skolnick C, Rasmussen C, Givehchi M, Mikkelsen B, Scherer T, Downs T, Keil W. 3760 km, 100 G SSMF transmission over commercial terrestrial DWDM ROADM systems using SD-FEC. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2012, PDP5D.4

    [30] Zhou X, Birk M. New design method for a WDM system employing broad-band raman amplification. IEEE Photonics Technology Letters, 2004, 16(3): 912-914

    [31] Zhou X, Yu J, Huang M F, Shao Y, Wang T, Nelson L E, Magill P D, Birk M, Borel P I, Peckham D W, Lingle R, Zhu B. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both preand post-transmission digital signal processing. Journal of Lightwave Technology, 2011, 29(4): 571-577

    [32] Fang T T. Analysis of self-noise in a fourth-power clock regenerator. IEEE Transactions on Communications, 1991, 39(1): 133-140

    [33] Zhou X. An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format. IEEE Photonics Technology Letters, 2010, 22(14): 1051-1053

    [34] Chang D, Yu F, Xiao Z, Stojanovic N, Hauske F N, Cai Y, Xie C. FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 1015. In: Proceedings of conference on Optical Fiber Communication-National Fiber Optic Engineers Conference. 2011, OTuN2

    [35] Vacondio F, Simonneau C, Lorcy L, Antona1 J C, Bononi A, Bigo S. Experimental characterization of Gaussian-distributed nonlinear distortions. In: Proceedings of European Conference and Exposition Optical Communications. 2011, We.7.B.1

    [36] Zhu B, Chandrasekhar S, Liu X, Peckham D W. Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links. IEEE Photonics Technology Letters, 2011, 23(19): 1400-1402

    [37] Dischler R. Experimental comparison of 32- and 64-QAM constellation shapes on a coherent PDM burst mode capable system. In: Proceedings of the 37th European Conference Exhibition on Optical Communication. 2011, Mo. 2.A.6

    [38] Mateo EF, Zhou X, Li G. Selective post-compensation of nonlinear impairments in polarization-division multiplexed WDM systems with different channel granularities. IEEE Journal of Quantum Electronics, 2011, 47(1): 109-116

    Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Frontiers of Optoelectronics, 2013, 6(1): 30
    Download Citation