• High Power Laser and Particle Beams
  • Vol. 34, Issue 2, 026016 (2022)
Meng Huang1, Jianyu Zhu1、*, Jun Wu1, Songbai Zhang2, Rui Li3, and Gang Li3
Author Affiliations
  • 1Center for Strategic Studies, China Academy of Engineering Physics, Beijing 100088, China
  • 2School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644005, China
  • 3Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202234.210356 Cite this Article
    Meng Huang, Jianyu Zhu, Jun Wu, Songbai Zhang, Rui Li, Gang Li. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34(2): 026016 Copy Citation Text show less
    Framework of neutron activation simulation program
    Fig. 1. Framework of neutron activation simulation program
    Databases of half-lives and γ-decay of radionuclides
    Fig. 2. Databases of half-lives and γ-decay of radionuclides
    Output file of radionuclide numbers of neutron activation simulation program
    Fig. 3. Output file of radionuclide numbers of neutron activation simulation program
    Nuclear warhead model
    Fig. 4. Nuclear warhead model
    Spectra of neutrons emitted from nuclear warhead models
    Fig. 5. Spectra of neutrons emitted from nuclear warhead models
    Relationship curves between numbers of 7 radionuclides and idle time
    Fig. 6. Relationship curves between numbers of 7 radionuclides and idle time
    Spectra of γ rays entering HPGe detector under different neutron irradiation time and idle time
    Fig. 7. Spectra of γ rays entering HPGe detector under different neutron irradiation time and idle time
    structureouter radius/cmmass/kgingredient parameters
    hole5.770.0vacuum
    fissile core7.012.0weapons-grade uranium (234U(1%), 235U(93.3%), 238U(5.5%), O(0.2%))
    reflector9.03.0natural beryllium
    tamper12.079.0Model 1: depleted uranium (235U(0.3%), 238U(99.7%)); Model 2: Natural tungsten
    explosive22.071.0explosive (atom number ratio is H:C:N:O=2:1:2:2)
    shell23.017.0natural aluminium
    Table 1. Size, mass and ingredient parameters of structures in nuclear warhead model
    materialnuclideportionneutron yield/neutrons∙s−1
    (α, n) reactionspontaneous fission
    weapon-grade uranium234U1%505.546
    235U93.3%0.0120.299
    238U5.5%0.00113.57
    O0.2%00
    depleted uranium235U0.3%00.299
    238U99.7%013.57
    Table 2. Neutron fields of fissile materials
    simulation softwarecontribution of fission core to neutron leakage from shell (neutrons/s)contribution of tamper to neutron leakage from shell (neutrons/s)total neutron leakage (neutrons/s)
    Model 1neutron activation simulation program18718736
    MCNP518720738
    Model 2neutron activation simulation program13013
    MCNP513013
    Table 3. Numbers of neutrons emitted from nuclear warhead model
    radionuclidenuclear reactionhalf-lifedecay type
    16N16O(n,p)16N7.130 sβ, γ
    15O16O(n,2n)15O122.240 sβ+
    13N14N(n,2n)13N9.970 minβ+, β, γ
    11C12C(n,2n)11C20.48 minβ+, β, γ
    14C14N(n,p)14C5730 aβ
    Table 4. Radionuclides in nuclear warhead model
    simulation softwareneutrons simulatedequivalent measuring timenumber of radionuclide
    16N15O13N11C14C
    Model 1neutron activation simulation program1079.19×103 s470405.56×106
    GEANT41079.19×103 s610505.72×106
    Model 2neutron activation simulation program1075.23×105 s350205.93×106
    GEANT41075.23×105 s360906.07×106
    Table 5. Production of radionuclides in explosive
    elementatom proportion/%nuclide
    H13.31H/2H
    O73.716O/17O
    Na1.823Na
    Mg0.324Mg/25Mg/26Mg
    Al4.227Al
    Si0.328Si/29Si/30Si
    K1.239K/40K/41K
    Ca4.840Ca/42Ca/43Ca/44Ca/46Ca/48Ca
    Fe0.454Fe/56Fe/57Fe/58Fe
    Table 6. Element composition of concrete floor model
    radionuclidehalf-lifedecay typeyield/s−1activation reaction
    14C5715 aβ1.5917O(n,α)
    16N7.13 sβ0.61316O(n,p)
    20F11.0 sβ0.43223Na(n,α)
    23Ne37.2 sβ1.0523Na(n,p)
    24Na14.96 hβ14.823Na(n,γ), 24Mg(n,p), 27Al(n,α)
    27Mg9.45 minβ7.0527Al(n,p)
    28Al2.25 minβ15.627Al(n,γ), 28Si(n,p)
    36Cl3.01×105 aβ+,EC20.139K(n,α)
    37Ar35.0 dEC82.740Ca(n,α)
    39Ar268 aβ61.639K(n,p), 42Ca(n,α)
    41Ar1.82 hβ0.070041K(n,p)
    40K1.26×109 aβ+,EC,γ26139K(n,γ), 40Ca(n,p)
    42K12.36 hβ2.0441K(n,γ), 42Ca(n,p)
    41Ca1.02×105 aEC29.440Ca(n,γ)
    45Ca162.7 dβ1.1844Ca(n,γ)
    49Ca8.72 minβ0.13448Ca(n,γ)
    54Mn312 dEC,γ0.83554Fe(n,p)
    56Mn2.579 hβ0.14156Fe(n,p)
    55Fe2.73 aEC0.79854Fe(n,γ)
    Table 7. Information of activation products of concrete floor model
    Meng Huang, Jianyu Zhu, Jun Wu, Songbai Zhang, Rui Li, Gang Li. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34(2): 026016
    Download Citation