• Frontiers of Optoelectronics
  • Vol. 11, Issue 4, 360 (2018)
Ru GE, Fei QIN, Lin HU, Sixing XIONG, and Yinhua ZHOU*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-018-0847-4 Cite this Article
    Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Frontiers of Optoelectronics, 2018, 11(4): 360 Copy Citation Text show less
    References

    [1] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

    [2] Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424

    [3] Correa-Baena J P, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739–744

    [4] Rajagopal A, Yao K, Jen A K. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials, 2018, 30(32): e1800455

    [5] Jiang Y, Luo B, Jiang F, Jiang F, Fuentes-Hernandez C, Liu T, Mao L, Xiong S, Li Z, Wang T, Kippelen B, Zhou Y. Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating. Nano Letters, 2016, 16(12): 7829–7835

    [6] Qin F, Tong J H, Ge R, Luo BW, Jiang F Y, Liu T F, Jiang Y Y, Xu Z Y, Mao L, Meng W, Xiong S X, Li Z F, Li L Q, Zhou Y H. Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(36): 14017–14024

    [7] Bai Y, Meng X, Yang S. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Advanced Energy Materials, 2018, 8(5): 1701883

    [8] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446

    [9] Gu P Y,Wang N,Wang C Y, Zhou Y C, Long G K, TianMM, Chen W Q, Sun X W, Kanatzidis M G, Zhang Q C. Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(16): 7339–7344

    [10] Li M, Zhao C,Wang Z K, Zhang C C, Lee H K H, Pockett A, Barbé J, Tsoi W C, Yang Y G, Carnie M J, Gao X Y, Yang W X, Durrant J R, Liao L S, Jain S M. Interface modification by ionic liquid: a promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells. Advanced Energy Materials, 2018, 8(24): 1801509

    [11] Mali S S, Hong C K. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528–10540

    [12] Wang Z K, Liao L S. Doped charge-transporting layers in planar perovskite solar cells. Advanced Optical Materials, 2018, 6(17): 1800276

    [13] Zhao T, Chueh C C, Chen Q, Rajagopal A, Jen A K Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Letters, 2016, 1(4): 757–763

    [14] Liang PW, Chueh C C,Williams S T, Jen A K Y. Roles of fullerenebased interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Advanced Energy Materials, 2015, 5(10): 1402321

    [15] Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Letters, 2015, 15(4): 2756–2762

    [16] Tang C G, Ang M C, Choo K K, Keerthi V, Tan J K, Syafiqah M N, Kugler T, Burroughes J H, Png R Q, Chua L L, Ho P K. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature, 2016, 539(7630): 536–540

    [17] Chang C Y, Huang W K, Chang Y C, Lee K T, Chen C T. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(2): 640–648

    [18] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546

    [19] Yuan D X, Yuan X D, Xu Q Y, Xu M F, Shi X B,Wang Z K, Liao L S. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(40): 26653–26658

    [20] Lin Y, Shen L, Dai J, Deng Y,Wu Y, Bai Y, Zheng X,Wang J, Fang Y, Wei H, Ma W, Zeng X C, Zhan X, Huang J. π-conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Advanced Materials, 2017, 29(7): 1604545

    [21] Hu L, Liu T, Sun L, Xiong S, Qin F, Jiang X, Jiang Y, Zhou Y. Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. Chemical Communications, 2018, 54(37): 4704–4707

    [22] Jiang Y Y, Li J, Xiong S X, Jiang F Y, Liu T F, Qin F, Hu L, Zhou Y H. Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(33): 17632–17639

    [23] Ye Q Q, Wang Z K, Li M, Zhang C C, Hu K H, Liao L S. N-type doping of fullerenes for planar perovskite solar cells. ACS Energy Letters, 2018, 3(4): 875–882

    [24] Li M,Wang Z K, Kang T, Yang Y, Gao X, Hsu C S, Li Y, Liao L S. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43: 47–54

    [25] Hu L, Liu T, Duan J, Ma X, Ge C, Jiang Y, Qin F, Xiong S, Jiang F, Hu B, Gao X, Yi Y, Zhou Y. An amidine-type n-dopant for solutionprocessed field-effect transistors and perovskite solar cells. Advanced Functional Materials, 2017, 27(41): 1703254

    [26] Bin Z Y, Li J W, Wang L D, Duan L. Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environmental Science, 2016, 9(11): 3424–3428

    [27] Wang Z, McMeekin D P, Sakai N, van Reenen S,Wojciechowski K, Patel J B, Johnston M B, Snaith H J. Efficient and air-stable mixedcation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Advanced Materials, 2017, 29(5): 1604186

    [28] Beaula T J, Muthuraja P, Sethuram M, Dhandapani M, Rastogi V K, Jothy V B. Biological and spectral studies of O-tolyl biguanide: experimental and theoretical approach. Journal of Molecular Structure, 2017, 1128: 290–299

    [29] Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H,Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332

    [30] Jiang F Y, Liu T F, Luo B W, Tong J H, Qin F, Xiong S X, Li Z F, Zhou Y H. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(4): 1208–1213

    [31] Liu T, Jiang F, Qin F, Meng W, Jiang Y, Xiong S, Tong J, Li Z, Liu Y, Zhou Y. Nonreduction-active hole-transporting layers enhancing open-circuit voltage and efficiency of planar perovskite solar cells. ACS Applied Materials & Interfaces, 2016, 8(49): 33899–33906

    Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Frontiers of Optoelectronics, 2018, 11(4): 360
    Download Citation