[1] JEPPSSON M, DICK K A, WAGNER J B, et al. GaAs/GaSb nanowire heterostructures grown by MOVPE[J]. Journal of Crystal Growth, 2008, 310(18): 4115-4121.
[2] YANG Zai-xing, HAN Ning, FANG Ming, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires[J]. Nature Communications, 2014, 5: 5249.
[3] LIAO Yong-ping, ZHANG Yu, XING Jun-liang, et al.GaSb-based quantum wells 2μm high power laser diode[J]. Chinese Journal of Lasers, 2015(B09): 35-38.
[4] JI Hai-ming, LIANG Bao-lai, SIMMONDS P J, et al. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence[J]. Applied Physics Letters, 2015, 106(10): 103104.
[5] WANG Yue, LIU Guo-jun, XING Jun-liang,et al. Study of the ohmic contact of gasb-based semiconductor laser[J].Chinese Journal of Lasers, 2012, 39(1): 54-57.
[6] KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990.
[7] DEL ALAMO J A. Nanometre-scale electronics with III-V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323.
[8] HOFFMANN J, LEHNERT T, HOFFMANN D, et al. Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes[J]. Semiconductor Science and Technology, 2009, 24(6): 065008
[9] FANG Dan, FANG Xuan, LI Yong-feng, et al. Photoluminescence properties of the GaSb nanostructures irradiated by femtosecond laser[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 117-120.
[10] ZHAO Lian-feng, TAN Zhen, BAI Rong-xu, et al. Effects of sulfur passivation on GaSb metal-oxide-semiconductor capacitors with neutralized and unneutralized (NH4)2S solutions of varied concentrations[J]. Applied Physics Express, 2013, 6(5): 056502.
[11] SALIHOGLU O. Atomic layer deposited passivation layers for superlattice photodetectors[J]. Journal of Vacuum Science & Technology B, 2014, 32(5): 051201
[12] CHEN Fang, LIU Guo-jun, WEI Zhi-peng, et al. Study on the properties of gallium antimonide surface passivatied with S2Cl2 solution[C]. Optoelectronics and Microelectronics (ICOM), 2012 International Conference on IEEE, 2012: 21-24.
[13] XU Run-shen, TAKOUDIS C G. Chemical passivation of GaSb-based surfaces by atomic layer deposited ZnS using diethylzinc and hydrogen sulfide[J]. Journal of Vacuum Science & Technology A, 2012, 30(1): 01A145
[14] RUPPALT L B, CLEVELAND E R, CHAMPLAIN J G, et al. Electronic properties of atomic-layer-deposited high-k dielectrics on GaSb (001) with hydrogen plasma pretreatment[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2015, 33(4): 04E102.
[15] ASCAZUBI R, SHNEIDER C, WILKE I, et al. Enhanced terahertz emission from impurity compensated GaSb[J]. Physical Review B, 2005, 72(4): 045328.
[16] WANG Bo, WEI Zhi-peng, LI Mei, et al. Tailoring the photoluminescence characteristics of p-type GaSb: the role of surface chemical passivation[J]. Chemical Physics Letters, 2013, 556: 182-187.
[17] LEE M, NICHOLAS D J, SINGER K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy[J]. Journal of Applied Physics, 1986, 59(8): 2895-2900.
[18] IYER S, SMALL L, HEGDE S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy[J]. Journal of Applied Physics, 1995, 77(11): 5902-5909.
[19] LUCKERT F, HAMILTON D I, YAKUSHEV M V, et al. Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Applied Physics Letters, 2011, 99(6): 062104.
[20] GE Xiao-tian, WANG Deng-kui, GAO Xian, et al. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy[J]. Rapid Research Letters, 2017, 11(3): 1770314.
[21] FANG Xuan, WEI Zhi-peng, CHEN Rui, et al. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10331-10336.
[22] CARDONA M, THEWALT M L W. Isotope effects on the optical spectra of semiconductors[J]. Reviews of Modern Physics, 2005, 77(4): 1173.
[23] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154.
[25] SIETHOFF H, AHLBOM K. The dependence of the Debye temperature on the elastic constants[J]. Physica Status Solidi, 1995, 190(1): 179-191.