• High Power Laser Science and Engineering
  • Vol. 7, Issue 1, 01000e17 (2019)
D. C. Speirs1、†,*, K. Ronald1, A. D. R. Phelps1, M. E. Koepke2, R. A. Cairns3, A. Rigby4, F. Cruz5, R. M. G. M. Trines6, R. Bamford6, B. J. Kellett6, B. Albertazzi7, J. E. Cross8, F. Fraschetti9, P. Graham10, P. M. Kozlowski8, Y. Kuramitsu11, F. Miniati8, T. Morita12, M. Oliver8, B. Reville13, Y. Sakawa12, S. Sarkar8, C. Spindloe6, M. Koenig7, L. O. Silva5, D. Q. Lamb14, P. Tzeferacos8、14, S. Lebedev15, G. Gregori8、14, and R. Bingham1、6
Author Affiliations
  • 1Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
  • 2Department of Physics, West Virginia University, Morgantown, WV 26506-6315, USA
  • 3School of Mathematics and Statistics, University of St. Andrews, Fife, KY16 9SS, UK
  • 4Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
  • 5GoLP/Instituto de Plasmas e Fusãu Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
  • 6STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
  • 7Laboratoire pour l’Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, 91128 Palaiseau Cedex, France
  • 8Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
  • 9Departments of Planetary Sciences and Astronomy, University of Arizona, Tucson, AZ 85721, USA
  • 10AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, UK
  • 11Department of Physics, National Central University, Taoyuan 320, China
  • 12Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
  • 13School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK
  • 14Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
  • 15Imperial College London, London, SW72AZ, UK
  • show less
    DOI: 10.1017/hpl.2019.3 Cite this Article Set citation alerts
    D. C. Speirs, K. Ronald, A. D. R. Phelps, M. E. Koepke, R. A. Cairns, A. Rigby, F. Cruz, R. M. G. M. Trines, R. Bamford, B. J. Kellett, B. Albertazzi, J. E. Cross, F. Fraschetti, P. Graham, P. M. Kozlowski, Y. Kuramitsu, F. Miniati, T. Morita, M. Oliver, B. Reville, Y. Sakawa, S. Sarkar, C. Spindloe, M. Koenig, L. O. Silva, D. Q. Lamb, P. Tzeferacos, S. Lebedev, G. Gregori, R. Bingham. Maser radiation from collisionless shocks: application to astrophysical jets[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e17 Copy Citation Text show less
    Perpendicular and parallel components of electron momentum (normalized to the mean electron momentum $p_{e0}$) for an evolved horseshoe distribution function, with the contours representing constant phase-space density.
    Fig. 1. Perpendicular and parallel components of electron momentum (normalized to the mean electron momentum $p_{e0}$) for an evolved horseshoe distribution function, with the contours representing constant phase-space density.
    Imaginary part of the refractive index as a function of frequency for a mean beam energy of 100 keV and a thermal spread of 1 keV, and a mean beam energy of 500 keV and a thermal spread of 5 keV. The magnetic field ratio is taken to be 20.
    Fig. 2. Imaginary part of the refractive index as a function of frequency for a mean beam energy of 100 keV and a thermal spread of 1 keV, and a mean beam energy of 500 keV and a thermal spread of 5 keV. The magnetic field ratio is taken to be 20.
    Composite overview of 3D VSim PIC simulation results in an $x$–$z$ plane ($y=0$) showing magnetic compression of an electron beam and subsequent cyclotron-maser emission in the X-mode at $t=1000t_{ce}$. The electron PIC particle trajectory is also overlaid (blue scatter plot) along with the corresponding velocity distribution over the simulation volume at $t=1000t_{ce}$.
    Fig. 3. Composite overview of 3D VSim PIC simulation results in an $x$$z$ plane ($y=0$) showing magnetic compression of an electron beam and subsequent cyclotron-maser emission in the X-mode at $t=1000t_{ce}$. The electron PIC particle trajectory is also overlaid (blue scatter plot) along with the corresponding velocity distribution over the simulation volume at $t=1000t_{ce}$.
    3D VSim PIC simulation results showing (a) the spectrum of EM emission at $z=86\unicode[STIX]{x1D706}_{ce}$ and (b) the transverse Poynting flux in a $y$–$z$ plane displaced from the electron beam.
    Fig. 4. 3D VSim PIC simulation results showing (a) the spectrum of EM emission at $z=86\unicode[STIX]{x1D706}_{ce}$ and (b) the transverse Poynting flux in a $y$$z$ plane displaced from the electron beam.
    Diagrammatic overview of the experimental setup showing the magnetic coil configuration, electron gun and the convergent axial magnetic field profile with peak-plateau region for cyclotron resonant energy transfer.
    Fig. 5. Diagrammatic overview of the experimental setup showing the magnetic coil configuration, electron gun and the convergent axial magnetic field profile with peak-plateau region for cyclotron resonant energy transfer.
    Experimental measurements for the TE01 resonance, illustrating the spectrum of the output signal, displaying a strong resonance close to the electron-cyclotron frequency, 4.42 GHz.
    Fig. 6. Experimental measurements for the TE01 resonance, illustrating the spectrum of the output signal, displaying a strong resonance close to the electron-cyclotron frequency, 4.42 GHz.
    D. C. Speirs, K. Ronald, A. D. R. Phelps, M. E. Koepke, R. A. Cairns, A. Rigby, F. Cruz, R. M. G. M. Trines, R. Bamford, B. J. Kellett, B. Albertazzi, J. E. Cross, F. Fraschetti, P. Graham, P. M. Kozlowski, Y. Kuramitsu, F. Miniati, T. Morita, M. Oliver, B. Reville, Y. Sakawa, S. Sarkar, C. Spindloe, M. Koenig, L. O. Silva, D. Q. Lamb, P. Tzeferacos, S. Lebedev, G. Gregori, R. Bingham. Maser radiation from collisionless shocks: application to astrophysical jets[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e17
    Download Citation