• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 12, 120301 (2023)
Hong YING1、4, Ali WEN2、*, Suiru ZHOU3, Xue HAI2, Wenfeng ZHANG3, Cuilan REN2、**, Haining SHI1、4, and Hefei HUANG2
Author Affiliations
  • 1Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, China
  • 2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
  • 4National Engineering Research Center for Nuclear Power Plant Safety & Reliability, Suzhou 215004, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.120301 Cite this Article
    Hong YING, Ali WEN, Suiru ZHOU, Xue HAI, Wenfeng ZHANG, Cuilan REN, Haining SHI, Hefei HUANG. Molecular dynamics analysis of primary radiation damage evolution in nickel, iron, and tungsten[J]. NUCLEAR TECHNIQUES, 2023, 46(12): 120301 Copy Citation Text show less
    References

    [1] Wang C X, Liu Z L, Chen W et al. Effect of metallic ion products on the corrosion of GH3535 alloy in a eutectic (Li, Na, K) F melt[J]. Journal of Materials Research and Technology, 22, 1014-1025(2023).

    [2] Vas J V, Pan J Q, Wang N L et al. Plasma processed tungsten for fusion reactor first-wall material[J]. Journal of Materials Science, 56, 1-10509(2021).

    [3] LU Hongwei, NI Zhijiao, ZHA Xuejun. Effects of stainless steel and tungsten on a hard X-ray diagnostics system in the Experimental Advanced Superconducting Tokamak (EAST)[J]. Journal of Radiation Research and Radiation Processing, 39, 040701(2021).

    [4] LIU Ze, TANG Lin, ZHANG Yafei et al. Simulation study on the thermal stress of W/316L stainless steel first wall material[J]. Nuclear Techniques, 45, 070601(2022).

    [5] Zinkle S J, Busby J T. Structural materials for fission & fusion energy[J]. Materials Today, 12, 12-19(2009).

    [6] Li Y G, Yang Y, Short M P et al. IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry[J]. Scientific Reports, 5, 18130(2015).

    [7] Ziegler J F, Biersack J P, Ziegler M D[M]. SRIM: the stopping and range of ions in matter(2008).

    [8] Stoller R E, Toloczko M B, Was G S et al. On the use of SRIM for computing radiation damage exposure[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 310, 75-80(2013).

    [9] Was G S[M]. Fundamentals of radiation materials science(2017).

    [10] Chen X Y, Wen A L, Ren C L et al. Theoretical prediction of radiation-enhanced diffusion behavior in nickel under self-ion irradiation[J]. Nuclear Science and Techniques, 31, 95(2020).

    [11] Guanghong LYU. Multiscale modeling and simulation of fusion metallic material under neutron irradiation[J]. Atomic Energy Science and Technology, 55, 1-7(2021).

    [12] Stoller R E. Primary radiation damage formation[M]. Comprehensive Nuclear Materials, 293-332(2012).

    [13] Kwon J, Kim W, Hong J H. Comparison of the primary damage states in iron and nickel by molecular dynamics simulations[J]. Radiation Effects and Defects in Solids, 161, 207-218(2006).

    [14] Bacon D J, Gao F, Osetsky Y N. The primary damage state in fcc, BCC and HCP metals as seen in molecular dynamics simulations[J]. Journal of Nuclear Materials, 276, 1-12(2000).

    [15] Setyawan W, Nandipati G, Roche K J et al. Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations[J]. Journal of Nuclear Materials, 462, 329-337(2015).

    [16] Warrier M, Bhardwaj U, Hemani H et al. Statistical study of defects caused by primary knock-on atoms in FCC Cu and BCC W using molecular dynamics[J]. Journal of Nuclear Materials, 467, 457-464(2015).

    [17] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 117, 1-19(1995).

    [18] Béland L K, Tamm A, Mu S et al. Accurate classical short-range forces for the study of collision cascades in Fe-Ni-Cr[J]. Computer Physics Communications, 219, 11-19(2017).

    [19] Bonny G, Terentyev D, Pasianot R C et al. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy[J]. Modelling and Simulation in Materials Science and Engineering, 19, 085008(2011).

    [20] Byggmästar J, Granberg F, Nordlund K. Effects of the short-range repulsive potential on cascade damage in iron[J]. Journal of Nuclear Materials, 508, 530-539(2018).

    [21] Chen Y C, Li Y H, Gao N et al. New interatomic potentials of W, Re and W-Re alloy for radiation defects[J]. Journal of Nuclear Materials, 502, 141-153(2018).

    [22] Zhang W, Han H, Dai J X et al. Simulation of migration and coalescence of helium bubbles in nickel[J]. Journal of Nuclear Materials, 518, 48-53(2019).

    [23] Owen E A, Yates E L. X-ray measurement of the thermal expansion of pure nickel[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 809-819(1936).

    [24] Goldschmidt H J[M]. Advanced X-ray analysis(1962).

    [25] Dutta B N, Dayal B. Lattice constants and thermal expansion of palladium and tungsten up to 878 ℃ by X-ray method[J]. Physica Status Solidi (B), 3, 2253-2259(1963).

    [26] Fu J, Chen Y C, Fang J Z et al. Molecular dynamics simulations of high-energy radiation damage in W and W-Re alloys[J]. Journal of Nuclear Materials, 524, 9-20(2019).

    [27] Stoller R E. The role of cascade energy and temperature in primary defect formation in iron[J]. Journal of Nuclear Materials, 276, 22-32(2000).

    [28] Gao F, Chen D, Hu W Y et al. Energy dissipation and defect generation in nanocrystalline silicon carbide[J]. Physical Review B, 81, 184101(2010).

    [29] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 18, 015012(2010).

    [30] Nordlund K, Averback R S. Point defect movement and annealing in collision cascades[J]. Physical Review B, 56, 2421-2431(1997).

    [31] Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates[J]. Nuclear Engineering and Design, 33, 50-54(1975).

    [32] Kinchin G H, Pease R S. The displacement of atoms in solids by radiation[J]. Reports on Progress in Physics, 18, 1-51(1955).

    [33] Yang Q G, Olsson P. Full energy range primary radiation damage model[J]. Physical Review Materials, 5, 073602(2021).

    [34] Nordlund K, Zinkle S J, Sand A E et al. Improving atomic displacement and replacement calculations with physically realistic damage models[J]. Nature Communications, 9, 1084(2018).

    [35] Bacon D J, Calder A F, Gao F et al. Computer simulation of defect production by displacement cascades in metals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 102, 37-46(1995).

    [36] Xiao W J, Wu G Y, Li M H et al. MD and OKMC simulations of the displacement cascades in nickel[J]. Nuclear Science and Techniques, 27, 57(2016).

    Hong YING, Ali WEN, Suiru ZHOU, Xue HAI, Wenfeng ZHANG, Cuilan REN, Haining SHI, Hefei HUANG. Molecular dynamics analysis of primary radiation damage evolution in nickel, iron, and tungsten[J]. NUCLEAR TECHNIQUES, 2023, 46(12): 120301
    Download Citation