• Acta Physica Sinica
  • Vol. 68, Issue 10, 104208-1 (2019)
Qian Zhang1、2, Ya-Hui Wang1、2, Ming-Jiang Zhang1、2、*, Jian-Zhong Zhang1、2, Li-Jun Qiao1、2, Tao Wang1、2, and Le Zhao1、2
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China
  • 2Institute of Optoelectronic Engineering, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.7498/aps.68.20190018 Cite this Article
    Qian Zhang, Ya-Hui Wang, Ming-Jiang Zhang, Jian-Zhong Zhang, Li-Jun Qiao, Tao Wang, Le Zhao. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser[J]. Acta Physica Sinica, 2019, 68(10): 104208-1 Copy Citation Text show less
    The characteristics of the chaotic light at two typical polarization matching states: (a1), (b1) Optical spectra; (a2), (b2) power spectra; (a3), (b3) autocorrelation curve两种典型偏振匹配态下混沌激光的特性 (a1), (b1) 光谱; (a2), (b2) 频谱; (a3), (b3)自相关曲线
    Fig. 1. The characteristics of the chaotic light at two typical polarization matching states: (a1), (b1) Optical spectra; (a2), (b2) power spectra; (a3), (b3) autocorrelation curve两种典型偏振匹配态下混沌激光的特性 (a1), (b1) 光谱; (a2), (b2) 频谱; (a3), (b3)自相关曲线
    The experimental setup of broadband chaotic BOCDA基于宽线宽混沌激光BOCDA系统的实验装置图
    Fig. 2. The experimental setup of broadband chaotic BOCDA基于宽线宽混沌激光BOCDA系统的实验装置图
    The BGS at different temperature end of FUT不同温度下待测光纤末端的布里渊增益谱
    Fig. 3. The BGS at different temperature end of FUT不同温度下待测光纤末端的布里渊增益谱
    The map of BFS distribution along the FUT: (a) Measured along the entire FUT; (b) the local enlargement near heated zone待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图
    Fig. 4. The map of BFS distribution along the FUT: (a) Measured along the entire FUT; (b) the local enlargement near heated zone待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图
    Measured distribution of the Brillouin frequency shift along the FUT待测光纤沿线布里渊频移分布曲线
    Fig. 5. Measured distribution of the Brillouin frequency shift along the FUT待测光纤沿线布里渊频移分布曲线
    The setup of time-gated时间门控技术装置图
    Fig. 6. The setup of time-gated时间门控技术装置图
    The time series of the chaotic pump waves (red) and pulse amplitude-modulated (blue)脉冲调制前后泵浦光时序图
    Fig. 7. The time series of the chaotic pump waves (red) and pulse amplitude-modulated (blue)脉冲调制前后泵浦光时序图
    The schematic diagram of SBS in the previous system (a) and the time-gated system (b)引入时间门控技术前(a)后(b)两路光在待测光纤中发生受激布里渊散射示意图
    Fig. 8. The schematic diagram of SBS in the previous system (a) and the time-gated system (b)引入时间门控技术前(a)后(b)两路光在待测光纤中发生受激布里渊散射示意图
    The relationship of the Chaotic BGS with temperature: (a) Temperature-dependence of the BGS in the FUT; (b) that of the BFS in the chaotic BOCDA systems with (blue) and without (red) the time-gated scheme混沌布里渊增益谱和温度的关系 (a)待测光纤中随温度变化的布里渊增益谱; (b)加入时间门控技术前后待测光纤中随温度变化的布里渊频移量
    Fig. 9. The relationship of the Chaotic BGS with temperature: (a) Temperature-dependence of the BGS in the FUT; (b) that of the BFS in the chaotic BOCDA systems with (blue) and without (red) the time-gated scheme混沌布里渊增益谱和温度的关系 (a)待测光纤中随温度变化的布里渊增益谱; (b)加入时间门控技术前后待测光纤中随温度变化的布里渊频移量
    The map of BFS distribution along the FUT: (a) Measured along the entire FUT:(b) the local enlargement near heated zone待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图
    Fig. 10. The map of BFS distribution along the FUT: (a) Measured along the entire FUT:(b) the local enlargement near heated zone待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图
    Measured distribution of the Brillouin frequency shift along the FUT in the setup after optimization优化后系统中待测光纤沿线布里渊频移分布曲线
    Fig. 11. Measured distribution of the Brillouin frequency shift along the FUT in the setup after optimization优化后系统中待测光纤沿线布里渊频移分布曲线
    Qian Zhang, Ya-Hui Wang, Ming-Jiang Zhang, Jian-Zhong Zhang, Li-Jun Qiao, Tao Wang, Le Zhao. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser[J]. Acta Physica Sinica, 2019, 68(10): 104208-1
    Download Citation