• NUCLEAR TECHNIQUES
  • Vol. 45, Issue 11, 110604 (2022)
Zhenlan WANG1, Junli GOU1、*, Shihao XU1, Zheng WANG1, Jianqiang SHAN1, Simao GUO2, and Bin TANG2
Author Affiliations
  • 1School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • 2Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
  • show less
    DOI: 10.11889/j.0253-3219.2022.hjs.45.110604 Cite this Article
    Zhenlan WANG, Junli GOU, Shihao XU, Zheng WANG, Jianqiang SHAN, Simao GUO, Bin TANG. Heat pipe failure accident analysis of a new type of megawatt heat pipe reactor[J]. NUCLEAR TECHNIQUES, 2022, 45(11): 110604 Copy Citation Text show less
    Diagram of a new type heat pipe reactor core
    Fig. 1. Diagram of a new type heat pipe reactor core
    Component numbering
    Fig. 2. Component numbering
    Structure diagram of single heat pipe-fuel assembly
    Fig. 3. Structure diagram of single heat pipe-fuel assembly
    Diagram of core cavity
    Fig. 4. Diagram of core cavity
    Equivalent network diagram of radiation heat transfer in the core cavity
    Fig. 5. Equivalent network diagram of radiation heat transfer in the core cavity
    Schematic of mesh
    Fig. 6. Schematic of mesh
    Verification of grid independence
    Fig. 7. Verification of grid independence
    Temperature field contour under steady condition (a) At the axial midpoint of the evaporation section, (b) Core axial section
    Fig. 8. Temperature field contour under steady condition (a) At the axial midpoint of the evaporation section, (b) Core axial section
    Axial temperature distribution of No.155 component
    Fig. 9. Axial temperature distribution of No.155 component
    Transient variation of single heat pipe failure (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature
    Fig. 10. Transient variation of single heat pipe failure (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature
    Average normalized output power of each circle of heat pipes and normalized total input and output power (a) Case 1, (b) Case 2, (c) Case 3
    Fig. 11. Average normalized output power of each circle of heat pipes and normalized total input and output power (a) Case 1, (b) Case 2, (c) Case 3
    Output power of failed heat pipe and surrounding heat pipes (a) Case 1, (b) Case 2, (c) Case 3
    Fig. 12. Output power of failed heat pipe and surrounding heat pipes (a) Case 1, (b) Case 2, (c) Case 3
    Axial temperature distribution of heat pipe failure (a) No.155 heat pipe failure, (b) No.156 heat pipe failure, (c) No.134 heat pipe failure
    Fig. 13. Axial temperature distribution of heat pipe failure (a) No.155 heat pipe failure, (b) No.156 heat pipe failure, (c) No.134 heat pipe failure
    Transient variation of three heat pipe failure (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature
    Fig. 14. Transient variation of three heat pipe failure (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature
    Transient variation of peak temperature in condition of four heat pipe failure
    Fig. 15. Transient variation of peak temperature in condition of four heat pipe failure
    Transient variation of parameters in case 3 and case 7 (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature and core average temperature
    Fig. 16. Transient variation of parameters in case 3 and case 7 (a) Transient variation of reactivity and normalized power, (b) Transient variation of peak temperature and core average temperature
    Temperature field contour at the axial midpoint of the evaporation section (z=0.275 m) in case 7
    Fig. 17. Temperature field contour at the axial midpoint of the evaporation section (z=0.275 m) in case 7
    结构Structure参数 Parameter数值 Value
    外包壳Outer cladding单元边长 Unit side length / mm16.28
    包壳材料 Cladding materialODS MA 754
    外气隙Outer gap外气隙外径 Outer gap outer diameter / mm27.10
    燃料Fuel燃料外径 Fuel outer diameter / mm27.05
    燃料材料 Fuel materialUN
    内气隙Inner gap内气隙外径 Inner gap outer diameter / mm23.05
    内包壳Inner cladding内包壳外径 Inner cladding outer diameter / mm23.00
    热管Heat pipe热管壁外径 Heat pipe wall outer diameter / mm21.50
    液相工质圆环外径 Liquid channel outer diameter / mm19.50
    吸液芯外径 Wick outer diameter / mm18.50
    蒸汽区外径 Vapor area outer diameter / mm17.90
    热管工质 Working fluidK
    管壁和吸液芯材料 Heat pipe wall and wick materialODS MA 754
    蒸发段/绝热段/冷凝段长度 Evaporator/adiabatic/condensation section / mm550/350/350
    绝热段保温层外径 Insulation at adiabatic section outer diameter / mm23.00
    绝热段承压层外径 Pressure-bearing pipe at adiabatic section outer diameter / mm27.05
    冷凝段承压层外径 Pressure-bearing pipe at condensing section outer diameter / mm27.05
    单根热管传热能力[8] Heat transfer capacity of single heat pipe / kW>20
    Table 1. Single heat pipe-fuel assembly parameters
    参数 Parameter数值 Value

    缓发中子份额

    Delayed neutron fraction / %

    0.000 23, 0.001 20, 0.001 16, 0.003 33, 0.000 99, 0.000 33

    缓发中子衰变常数

    Decay constant of delayed neutron / s-1

    0.012 49, 0.031 77, 0.109 62, 0.318 11, 1.351 18, 8.714 87

    平均中子代时间

    Mean neutron generation time / s

    4.829×10-7

    燃料与包壳温度反应性反馈系数

    Temperature reactivity coefficient of fuel and cladding / $·K-1

    2.72×10-6, 1.16×10-6
    功率分布 Power distribution

    轴向热点因子1.19,符合余弦分布

    Axial hot point factor 1.19, cosine function distribution

    径向热点因子1.13,符合贝塞尔函数分布

    Radial hot point factor 1.13, bessel function distribution

    Table 2. Neutron dynamic parameters of core and power distribution

    额定工况

    Steady state / K

    工况1

    Case 1 / K

    工况2

    Case 2 / K

    工况3

    Case 3 / K

    外包壳Outer cladding1 078.891 418.84(+339.95)1 259.28(+180.39)1 155.57(+76.68)
    燃料Fuel1 078.911 420.36(+341.45)1 261.86(+182.95)1 168.28(+89.37)
    内包壳Inner cladding1 061.021 412.59(+351.57)1 253.92(+192.90)1 167.91(+106.89)
    热管壁Heat pipe wall1 050.921 409.47(+358.55)1 251.13(+200.21)1 167.79(+116.87)
    Table 3. Peak temperature of single heat pipe failure
    额定工况Steady state / K工况4 Case 4 / K工况5 Case 5 / K

    内腔绝热

    Cavity adiabatic

    内腔辐射换热

    Cavity radiation

    内腔绝热

    Cavity adiabatic

    内腔辐射换热

    Cavity radiation

    内腔绝热

    Cavity adiabatic

    内腔辐射换热

    Cavity radiation

    外包壳

    Outer cladding

    1 078.891 078.811 732.261 548.171 478.911 471.31
    燃料Fuel1 078.911 078.821 733.921 553.491 481.741 474.08

    内包壳

    Inner cladding

    1 061.021 060.891 729.151 550.991 473.201 465.61

    热管壁

    Heat pipe wall

    1 050.921 050.211 727.221 549.521 469.961 462.71
    Table 4. Comparison of the peak temperature of three heat pipe failure under different boundary conditions

    工况3

    Case 3 / K

    工况7

    Case 7 / K

    外包壳Outer cladding1 155.57(+76.68)1 117.63(+38.74)
    燃料Fuel1 168.28(+89.37)1 129.31(+50.40)
    内包壳Inner cladding1 167.91(+106.89)1 129.06(+68.04)
    热管壁Heat pipe wall1 167.79(+116.87)1 128.98(+78.06)
    Table 5. Comparison of the peak temperature of case 3 and case 7
    Zhenlan WANG, Junli GOU, Shihao XU, Zheng WANG, Jianqiang SHAN, Simao GUO, Bin TANG. Heat pipe failure accident analysis of a new type of megawatt heat pipe reactor[J]. NUCLEAR TECHNIQUES, 2022, 45(11): 110604
    Download Citation