• Journal of Geo-information Science
  • Vol. 22, Issue 9, 1910 (2020)
Ruru CHEN1、2、3, Zhongmin HU4, Shenggong LI1、2、3, and Qun GUO1、2、3、*
Author Affiliations
  • 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 2National Ecosystem Science Data Center, Beijing 100101, China
  • 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
  • 4School of Geography, South China Normal University, Shipai Campus, Guangzhou 510631, China
  • show less
    DOI: 10.12082/dqxxkx.2020.190237 Cite this Article
    Ruru CHEN, Zhongmin HU, Shenggong LI, Qun GUO. Assessment of Normalized Difference Vegetation Index from Different Data Sources in Grassland of Northern China[J]. Journal of Geo-information Science, 2020, 22(9): 1910 Copy Citation Text show less
    References

    [1] PartonW J, ScurlockJ M O, OjimaD S et al. Impact of climate change on grassland production and soil carbon worldwide[J]. Global Change Biology, 1, 13-22(1995).

    [2] WangY, ZhouG, JiaB. Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China[J]. Ecological Modelling, 217, 72-78(2008).

    [3] O'MaraF P. The role of grasslands in food security and climate change[J]. Annals of Botany, 110, 1263-1270(2012).

    [4] HautierY, SeabloomE W, BorerE T et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands[J]. Nature, 508, 521-525(2014).

    [5] PoulterB, FrankD, CiaisP et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle[J]. Nature, 509, 600-603(2014).

    [6] BaiY, WuJ, XingQ et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology, 89, 2140-2153(2008).

    [7] LambinE F, StrahlerA H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales[J]. International Journal of Remote Sensing, 15, 2099-2119(1994).

    [8] CarlsonT N, RipleyD A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote sensing of Environment, 62, 241-252(1997).

    [9] BrinkmannK, DickhoeferU, SchlechtE et al. Quantification of aboveground rangeland productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data[J]. Remote Sensing of Environment, 115, 465-474(2011).

    [10] GangC, ZhangY, GuoL et al. Drought-Induced Carbon and Water Use Efficiency Responses in Dryland Vegetation of Northern China[J]. Frontiers in Plant Science, 10, 224(2019).

    [11] ZhaoJ, ZhangH, ZhangZ et al. Long-term time series of vegetation various and its relationship with climate factors by integrating AVHRR GIMMS and Terra MODIS data[J]. Fresenius Environ. Bull, 24, 4005-4018(2015).

    [12] JongR D, BruinS D, WitA D et al. Analysis of monotonic greening and browning trends from global NDVI time-series[J]. Remote Sensing of Environment, 115, 692-702(2011).

    [13] JongR D, VerbesseltJ, SchaepmanM E et al. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change[J]. Global Change Biology, 18, 642-655(2012).

    [14] PiaoS, WangX, ParkT et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment(2019).

    [15] MaoD, WangZ, LuoL et al. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China[J]. International Journal of Applied Earth Observations & Geoinformation, 18(2012).

    [16] TuckerC J, PinzonJ E, BrownM E et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing, 26, 4485-4498(2005).

    [17] SongY, MaM, VeroustraeteF. Comparison and conversion of AVHRR GIMMS and SPOT VEGETATION NDVI data in China[J]. International Journal of Remote Sensing, 31, 2377-2392(2010).

    [18] VanLeeuwen W J D, OrrB J, MarshS E et al. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications[J]. Remote sensing of environment, 100, 67-81(2006).

    [19] GuayK C, BeckP S A, BernerL T et al. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment[J]. Global Change Biology, 20, 3147-3158(2014).

    [20] FensholtR, RasmussenK, NielsenT T et al. Evaluation of earth observation based long term vegetation trends: Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data[J]. Remote Sensing of Environment, 113, 1886-1898(2009).

    [21] AtzbergerC, KlischA, MattiuzziM et al. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series[J]. Remote Sensing, 6, 257-284(2014).

    [22] BrownM E, PinzónJ E, DidanK et al. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 1787-1793(2006).

    [23] TarnavskyE, GarriguesS, BrownM E. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products[J]. Remote Sensing of Environment, 112, 535-549(2008).

    [24] 神祥金, 周道玮, 李飞等. 中国草原区植被变化及其对气候变化的响应[J]. 地理科学, 2015,35(5):622-629. [ ShenX J, ZhouD W, LiF, et al. Vegetation change and its response to climate change in Grassland of China[J]. Geosciences, 2015,35(5):622-629. ] [ Shen X J, Zhou D W, Li F, et al. Vegetation change and its response to climate change in Grassland of China[J]. Geosciences, 2015,35(5):622-629. ]

    [25] 张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019,64(27):2865-2875. [ ZhangY L, LiuL S, WangZ F, et al. Temporal and spatial characteristics of land use and cover change in the Tibetan Plateau[J] Science Bulletin, 2019,64(27):2865-2875. ] [ Zhang Y L, Liu L S, Wang Z F, et al. Temporal and spatial characteristics of land use and cover change in the Tibetan Plateau[J] Science Bulletin, 2019,64(27):2865-2875. ]

    [26] [D]. GIMMS NDVI. https://ecocast.arc.nasa.gov/data/pub/gimms/

    [27] LiuR G, ShangR, LiuY et al[D]. Globally comparing approaches for gap filling of temporal data to generate the continuous vegetation parameters, submission to Remote Sensing of Environment(2015). http://www.geodata.cn

    [28] [D]. SPOT_NDVI V2.2 Global. http://land.copernicus.vgt.vito.be

    [29] SenP K. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the American statistical association, 63, 1379-1389(1968).

    [30] FensholtR, ProudS R. Evaluation of earth observation based global long term vegetation trends: Comparing GIMMS and MODIS global NDVI time series[J]. Remote Sensing of Environment, 119, 131-147(2012).

    [31] 杜加强, 舒俭民, 王跃辉, 等. 青藏高原MODIS NDVI与GIMMS NDVI的对比[J]. 应用生态学报, 2014,25(2):533-544. [ DuJ Q, ShuJ M, WangY H, et al. Comparison of MODIS NDVI and GIMMS NDVI in Qinghai-Tibet Plateau[J]. Journal of Applied Ecology, 2014,25(2):533-544. ] [ Du J Q, Shu J M, Wang Y H, et al. Comparison of MODIS NDVI and GIMMS NDVI in Qinghai-Tibet Plateau[J]. Journal of Applied Ecology, 2014,25(2):533-544. ]

    [32] PettorelliN, VikJ O, MysterudA et al. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 20, 503-510(2005).

    [33] [D]. IPCC, 2016. Intergovernmental Panel on Climate Change (IPCC). http://www.ipcc.ch/

    [34] ZhaoW, HuZ, GuoQ et al. Contributions of climatic factors to inter-annual variability of vegetation index in northern China grasslands[J]. Journal of Climate(2019). https://www.ncbi.nlm.nih.gov/pubmed/32742077

    [35] AK, MD Smith. Variation among biomes in temporal dynamics of aboveground primary production[J]. Science, 291, 481-484(2001).

    [36] PiaoS, WangX, CiaisP et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 17, 3228-3239(2011).

    [37] 郭群, 李胜功, 胡中民, 等. 内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应[J]. 中国沙漠, 2015,35(3):616-623. [ GuoQ, LiS G, HuZ M, et al. Response of typical grassland ecosystem productivity of temperate grassland in Inner Mongolia to water at different time scales[J]. Desert of China, 2015,35(3):616-623. ] [ Guo Q, Li S G, Hu Z M, et al. Response of typical grassland ecosystem productivity of temperate grassland in Inner Mongolia to water at different time scales[J]. Desert of China, 2015,35(3):616-623. ]

    [38] 陆晴, 吴绍洪, 赵东升. 1982-2013年青藏高原高寒草地覆盖变化及与气候之间的关系[J]. 地理科学, 2017,37(2):292-300. [ LuQ, WuS H, ZhaoD S. The relationship between alpine grassland cover change and climate in Qinghai-Tibet Plateau from 1982 to 2013[J]. Geographic Science, 2017,37(2):292-300. ] [ Lu Q, Wu S H, Zhao D S. The relationship between alpine grassland cover change and climate in Qinghai-Tibet Plateau from 1982 to 2013[J]. Geographic Science, 2017,37(2):292-300. ]

    [39] 王青霞, 吕世华, 鲍艳, 等. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象, 2014,33(2):301-312. [ WangQ X, LuS H, BaoY, et al. Analysis of vegetation change characteristics at different time scales on the Qinghai-Tibet Plateau and its relationship with climate factors[J]. Plateau Meteorology, 2014,33(2):301-312. ] [ Wang Q X, Lu S H, Bao Y, et al. Analysis of vegetation change characteristics at different time scales on the Qinghai-Tibet Plateau and its relationship with climate factors[J]. Plateau Meteorology, 2014,33(2):301-312. ]

    Ruru CHEN, Zhongmin HU, Shenggong LI, Qun GUO. Assessment of Normalized Difference Vegetation Index from Different Data Sources in Grassland of Northern China[J]. Journal of Geo-information Science, 2020, 22(9): 1910
    Download Citation