• Frontiers of Optoelectronics
  • Vol. 7, Issue 3, 399 (2014)
Zhao WU, Yu YU, and Xinliang ZHANG*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0376-0 Cite this Article
    Zhao WU, Yu YU, Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Frontiers of Optoelectronics, 2014, 7(3): 399 Copy Citation Text show less
    References

    [1] Pan Z Q, Yu C Y, Willner A E. Optical performance monitoring for the next generation optical communication networks. Optical Fiber Technology, 2010, 16(1): 20–45

    [2] Chan C C, ed. Optical Performance Monitoring: Advanced Techniques for Next-Generation Photonic Networks. Burlington, MA: Academic Press, 2010

    [3] Li Z, Li G. Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitudehistogram evaluation. Journal of Lightwave Technology, 2006, 24(7): 2859–2866

    [4] Wu Z, Yu Y, Zhang X. Chromatic dispersion monitoring for NRZDPSK system using asynchronous amplitude histogram evaluation. Photonics Journal, IEEE, 2012, 4(4): 1212–1219

    [5] Kozicki B, Takuya O, Hidehiko T. Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis. Journal of Lightwave Technology, 2008, 26(10): 1353–1361

    [6] Zhao J, Li Z, Liu D, Cheng L, Lu C, Tam H Y. NRZ-DPSK and RZDPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling. Journal of Lightwave Technology, 2009, 27(23): 5295–5301

    [7] Kozicki B, Maruta A, Kitayama K I. Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delaytap sampling method. Optics Express, 2008, 16(6): 3566–3576

    [8] Vo T D, Corcoran B, Schroder J, PelusiMD, Xu D X, Densmore A, Ma R, Janz S, Moss D J, Eggleton B J. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. Journal of Lightwave Technology, 2011, 29(12): 1790–1796

    [9] Yang J Y, Zhang L, Wu X, Yilmaz O F, Zhang B, Willner A E. Alloptical chromatic dispersion monitoring for phase-modulated signals utilizing cross-phase modulation in a highly nonlinear fiber. Photonics Technology Letters, IEEE, 2008, 20(19): 1642–1644

    [10] Vorreau P, Kilper D C, Leuthold J. Optical noise and dispersion monitoring with SOA-based optical 2R regenerator. Photonics Technology Letters, IEEE, 2005, 17(1): 244–246

    [11] Yang J, Yu C Y, Yang Y F, Cheng L H, Li Z H, Lu C, Lau A P T, Tam H, Wai P K A. PMD-insensitive CD monitoring based on RF clock power ratio measurement with optical notch filter. Photonics Technology Letters, IEEE, 2011, 23(21): 1576–1578

    [12] Zhao J, Lau A P T, Qureshi K K, Li Z H, Lu C, Tam H Y. Chromatic dispersion monitoring for DPSK systems using RF power spectrum. Journal of Lightwave Technology, 2009, 27(24): 5704–5709

    [13] Lize Y K, Christen L, Yang J Y, Saghari P, Nuccio S, Willner A E, Kashyap R. Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission. Photonics Technology Letters, IEEE, 2007, 19(1): 3–5

    [14] Tsai K T, Way W I. Chromatic-dispersion monitoring using an optical delay-and-add filter. Journal of Lightwave Technology, 2005, 23(11): 3737–3747

    [15] Shen T S R, Lau A P T, Yu C Y. Simultaneous and independent multi-parameter monitoring with fault localization for DSP-based coherent communication systems. Optical Express, 2010, 18(23): 23608–23619

    [16] Faruk M S, Mori Y, Zhang C, Igarashi K, Kikuchi K. Multiimpairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver. Optics Express, 2010, 18(26): 26929–26936

    [17] Qi S, Lau A P T, Lu C. Fast and robust chromatic dispersion estimation using auto-correlation of signal power waveform for DSP based-coherent systems. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2012

    [18] Joergensen C, Danielsen S L, Stubkjaer K E, Schilling M, Daub K, Doussiere P, Pommerau F, Hansen P B, Poulsen H N, Kloch A, Vaa M, Mikkelsen B, Lach E, Laube G, Idler W, Wunstel K. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5): 1168–1180

    [19] Durhuus T, Mikkelsen B, Joergensen C, Lykke Danielsen S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6): 942–954

    [20] Dorrer C, Maywar D N. RF spectrum analysis of optical signals using nonlinear optics. Journal of Lightwave Technology, 2004, 22(1): 266–274

    [21] Pelusi M, Luan F, Vo T D, Lamont M R E, Madden S J, Bulla D A, Choi D Y, Luther-Davies B, Eggleton B J. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photonics, 2009, 3(3): 139–143

    [22] Nezam S M R M, Song Y W, Yu C, McGeehan J E, Sahin A B, Willner A E. First-order PMD monitoring for NRZ data using RF clock regeneration techniques. Journal of Lightwave Technology, 2004, 22(4): 1086–1093

    [23] Park K J, Lee J H, Youn C J, Chung Y C. A simultaneous monitoring technique for polarization-mode dispersion and groupvelocity dispersion. In: Proceedings of Optical Fiber Communication Conference. Anaheim, CA: IEEE, 2002, 199–200

    Zhao WU, Yu YU, Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Frontiers of Optoelectronics, 2014, 7(3): 399
    Download Citation