• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 470 (2020)
Dongsen YANG1、*, Runlong CAI2, Jingkun JIANG2, Yan MA1, and Jun ZHENG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.007 Cite this Article
    YANG Dongsen, CAI Runlong, JIANG Jingkun, MA Yan, ZHENG Jun. Performance Intercomparison of Diethylene Glycol-Based Aerosol Size Spectrometers in Sub-3 nm Particle Size Range[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 470 Copy Citation Text show less
    References

    [1] Wang Zhibin, Hu Min, Wu Zhijun, et al. Reasearch on the formation mechanisms of new particles in the atmosphere[J]. Acta Chimica Sinica, 2013, 71(4): 519-527 (in Chinese).

    [2] Zhang R Y, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical reviews, 2012, 112(3): 1957-2011.

    [3] Wang Z B, Hu M, Pei X Y, et al. Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing[J]. Atmospheric Environment, 2015, 103: 7-17.

    [4] Jiang J K, Chen M D, Kuang C A, et al. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm[J]. Aerosol Science and Technology, 2011, 45(4): 510-521.

    [5] Lehtipalo K, Lepp J, Kontkanen J, et al. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the particle size magnifier[J]. Boreal Environment Research, 2014, 19(suppl. B): 215-236.

    [6] Vanhanen J, Mikkil J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection[J]. Aerosol Science and Technology, 2011, 45(4): 533-542.

    [7] Kuang C A, Chen M D, Zhao J, et al. Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei[J]. Atmospheric Chemistry and Physics, 2012, 12(7): 3573-3589.

    [8] Kulmala M, Vehkamki H, Petj T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations[J]. Journal of Aerosol Science, 2004, 35(2): 143-176.

    [9] Iida K, Stolzenburg M R, McMurry P H. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter[J]. Aerosol Science and Technology, 2009, 43(1): 81-96.

    [10] Cai R L, Yang D S, Ahonen L R, et al. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier[J]. Atmospheric Measurement Techniques, 2018, 11(7): 4477-4491.

    [11] Cai R L, Yang D S, Fu Y Y, et al. Aerosol surface area concentration: A governing factor in new particle formation in Beijing[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340.

    [12] Kontkanen J, Lehtipalo K, Ahonen L, et al. Measurements of sub-3 nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities[J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2163-2187.

    [13] Xiao S, Wang M Y, Yao L, et al. Strong atmospheric new particle formation in winter in urban Shanghai, China[J]. Atmospheric Chemistry and Physics, 2015, 15(4): 1769-1781.

    [14] Yu H, Zhou L Y, Dai L, et al. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2641-2657.

    [15] Hao Jian, Yin Yan, Xiao Hui, et al. Observation of new particle formation and growth on Mount Huang[J]. China Environment Science, 2015, 35(1): 13-22 (in Chinese).

    [16] Wang Honglei, Zhu Bin, Shen Lijuan, et al. Atmospheric particle formation events in Nanjing during summer 2010[J]. Environment Science, 2012, 33(3): 701-710 (in Chinese).

    [17] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-479.

    [18] Kirkby J, Duplissy J, Sengupta K, et al. Ion-induced nucleation of pure biogenic particles[J]. Nature, 2016, 533(7604): 521-526.

    [19] Tang Q X, Cai R L, You X Q, et al. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame[J]. Proceedings of the Combustion Institute, 2017, 36(1): 993-1000.

    [20] Wang Y, Kangasluoma J, Attoui M, et al. The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors[J]. Combustion and Flame, 2017, 176: 72-80.

    [21] Kangasluoma J, Franchin A, Duplissy J, et al. Operation of the Airmodus A11 nano condensation nucleus counter at various inlet pressures and various operation temperatures, and design of a new inlet system[J]. Atmospheric Measurement Techniques, 2016, 9(7): 2977-2988.

    [22] Kangasluoma J, Kuang C A, Wimmer D, et al. Sub-3 nm particle size and composition dependent response of a nano-CPC battery[J]. Atmospheric Measurement Techniques, 2014, 7(3): 689-700.

    [23] Kangasluoma J, Kontkanen J. On the sources of uncertainty in the sub-3 nm particle concentration measurement[J]. Journal of Aerosol Science, 2017, 112: 34-51.

    [24] Cai R L, Chen D, Hao J M, et al. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing[J]. Journal of Aerosol Science, 2017, 106: 111-119.

    [25] Cai R L, Jiang J K. A new balance formula to estimate new particle formation rate: Reevaluating the effect of coagulation scavenging[J]. Atmospheric Chemistry and Physics, 2017, 17: 12659-12675.

    [26] Stolzenburg M R, McMurry P H. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function[J]. Aerosol Science and Technology, 2008, 42(6): 421-432.

    [27] Deng C J, Fu Y Y, Dada L, et al. Seasonal characteristics of new particle formation and growth in urban Beijing[J]. Environmental science & technology, 2020, 54(14): 8547-8557.

    [28] Kangasluoma J, Junninen H, Lehtipalo K, et al. Remarks on ion generation for CPC detection efficiency studies in sub-3-nm size range[J]. Aerosol Science and Technology, 2013, 47(5): 556-563.

    [29] Fernández de la Mora J, Kozlowski J. Hand-held differential mobility analyzers of high resolution for 1-30 nm particles: Design and fabrication considerations[J]. Journal of Aerosol Science, 2013, 57: 45-53.

    [30] He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing, China[J]. Atmospheric Environment, 2001, 35: 4959-4970.

    [31] Liu J Q, Jiang J K, Zhang Q, et al. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μ m[J]. Frontiers of Environmental Science & Engineering, 2014, 10(1): 63-72.

    [32] Maher E F, Laird N M. EM algorithm reconstruction of particle size distributions from diffusion battery data[J]. Journal of Aerosol Science, 1985, 16(6): 557-570.

    [33] Wiedensohler A. An approximation of the bipolar charge distribution for particles in the submicron size range[J]. Journal of Aerosol Science, 1988, 19(3): 387-389.

    [34] Chen X T, McMurry P H, Jiang J K. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers[J]. Aerosol Science and Technology, 2018, 52(8): 809-813.

    [35] Cai R L, Jiang J K, Mirme S, et al. Parameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particles[J]. Journal of Aerosol Science, 2018, 127: 102-115.

    YANG Dongsen, CAI Runlong, JIANG Jingkun, MA Yan, ZHENG Jun. Performance Intercomparison of Diethylene Glycol-Based Aerosol Size Spectrometers in Sub-3 nm Particle Size Range[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 470
    Download Citation