• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Y Y Wu1、2、3, X L Zhu2、3, H Y Yang4, Z G Wang5, Y H Li1、†, and B T Wang2、3、6
Author Affiliations
  • 1School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3Spallation Neutron Source Science Center, Dongguan 52808, China
  • 4School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 11201, China
  • 5Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 6Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 03000, China
  • show less
    DOI: 10.1088/1674-1056/ab973c Cite this Article
    Y Y Wu, X L Zhu, H Y Yang, Z G Wang, Y H Li, B T Wang. First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less

    Abstract

    Sulfide nanocrystals and their composites have shown great potential in the thermoelectric (TE) field due to their extremely low thermal conductivity. Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized. Herein, we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory, which provides the basis for its further experimental studies. Our results indicate that the highly twofold degeneracy of the bands appears at the Γ point in the Brillouin zone, resulting in a high Seebeck coefficient. Besides, Au2S exhibits an ultra-low lattice thermal conductivity (~ 0.88 W?m-1?K-1 at 700 K). At 700 K, the thermoelectric figure of merit of the optimal p-type doping is close to 1.76, which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K. Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.
    $$ \begin{eqnarray}\begin{array}{lll}{S}_{\alpha \beta }(T,\mu ) & = & \displaystyle \frac{1}{eTV{\sigma }_{\alpha \beta }(T,\mu )}\displaystyle \int {\Sigma }_{\alpha \beta }(\varepsilon )(\varepsilon -\mu )\\ & & \times \left[-\displaystyle \frac{\partial {f}_{\mu }(T,\varepsilon )}{\partial \varepsilon }\right]{\rm{d}}\varepsilon,\end{array}\end{eqnarray}$$(1)

    View in Article

    $$ \begin{eqnarray}{\sigma }_{\alpha \beta }(T,\mu )=\displaystyle \frac{1}{V}\displaystyle \int {\Sigma }_{\alpha \beta }(\varepsilon )\left[-\displaystyle \frac{\partial {f}_{\mu }(T,\varepsilon )}{\partial \varepsilon }\right]{\rm{d}}\varepsilon,\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray}{\Sigma }_{\alpha \beta }(\varepsilon )=\displaystyle \frac{{e}^{2}}{{N}_{0}}\displaystyle {\sum }_{i,q}{\tau }_{{\rm{e}}}{\upsilon }_{\alpha }(i,q){\upsilon }_{\beta }(i,q)\displaystyle \frac{\delta (\varepsilon -{\varepsilon }_{i,q})}{d\varepsilon },\end{eqnarray}$$(3)

    View in Article

    $$ \begin{eqnarray}S=\displaystyle \frac{{\pi }^{2}{k}_{{\rm{B}}}^{2}T}{3e}{\left\{\displaystyle \frac{1}{n}\displaystyle \frac{{\rm{d}}n(\varepsilon )}{{\rm{d}}\varepsilon }+\displaystyle \frac{1}{{\mu }_{{\rm{m}}}}\displaystyle \frac{{\rm{d}}{\mu }_{{\rm{m}}}(\varepsilon )}{{\rm{d}}\varepsilon }\right\}}_{\varepsilon =\mu },\end{eqnarray}$$(4)

    View in Article

    $$ \begin{eqnarray}{\kappa }_{{\rm{e}}}=L\sigma T,\end{eqnarray}$$(5)

    View in Article

    $$ \begin{eqnarray}{\kappa }_{{\rm{l}},i}=\displaystyle \frac{1}{V}\displaystyle \sum _{i}{c}_{i}{\upsilon }_{i}^{2}{\tau }_{i},\end{eqnarray}$$(6)

    View in Article

    $$ \begin{eqnarray}{\upsilon }_{\lambda }(q)=\displaystyle \frac{{\rm{d}}{\omega }_{\lambda }(q)}{{\rm{d}}q},\end{eqnarray}$$(7)

    View in Article

    $$ \begin{eqnarray}{\gamma }_{\lambda }(q)=-\displaystyle \frac{V}{{\omega }_{\lambda }(q)}\displaystyle \frac{\partial {\omega }_{\lambda }(q)}{\partial V}.\end{eqnarray}$$(8)

    View in Article

    $$ \begin{eqnarray}{P}_{3}=\displaystyle \frac{2}{3\varOmega }\left({P}_{3}^{(+)}+\displaystyle \frac{1}{2}{P}_{3}^{(-)}\right),\end{eqnarray}$$(9)

    View in Article

    Y Y Wu, X L Zhu, H Y Yang, Z G Wang, Y H Li, B T Wang. First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity[J]. Chinese Physics B, 2020, 29(8):
    Download Citation