• Photonics Research
  • Vol. 7, Issue 12, 1370 (2019)
Yi Kang, Leihong Zhang, Hualong Ye, Mantong Zhao..., Saima Kanwal, Chunyan Bai and Dawei Zhang*|Show fewer author(s)
Author Affiliations
  • University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.1364/PRJ.7.001370 Cite this Article Set citation alerts
    Yi Kang, Leihong Zhang, Hualong Ye, Mantong Zhao, Saima Kanwal, Chunyan Bai, Dawei Zhang, "One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access," Photonics Res. 7, 1370 (2019) Copy Citation Text show less
    References

    [1] D. Maluenda, A. Carnicer, R. Martínez-Herrero, I. Juvells, B. Javidi. Optical encryption using photon-counting polarimetric imaging. Opt. Express, 23, 655-666(2015).

    [2] X. Li, M. Zhao, Y. Xing, H. Zhang, L. Li, S. Kim, X. Zhou, Q. Wang. Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging. Opt. Express, 26, 11084-11099(2018).

    [3] L. Sui, X. Zhao, C. Huang, A. Tian, A. Anand. An optical multiple-image authentication based on transport of intensity equation. Opt. Lasers Eng., 116, 116-124(2019).

    [4] P. Refregier, B. Javidi. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett., 20, 767-769(1995).

    [5] S. K. Rajput, N. K. Nishchal. Optical asymmetric cryptosystem based on photon counting and phase-truncated Fresnel transforms. J. Mod. Opt., 64, 878-886(2017).

    [6] X. Wang, W. Chen, X. Chen. Optical information authentication using compressed double-random-phase-encoded images and quick-response codes. Opt. Express, 23, 6239-6253(2015).

    [7] I. Mehra, N. K. Nishchal. Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt. Express, 22, 5474-5482(2014).

    [8] X. Peng, P. Zhang, H. Wei, B. Yu. Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett., 31, 1044-1046(2006).

    [9] S. K. Rajput, N. K. Nishchal. Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt., 52, 871-878(2013).

    [10] D. N. Klyshko. Two-photon light: influence of filtration and a new possible EPR experiment. Phys. Lett. A, 128, 133-137(1988).

    [11] R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).

    [12] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).

    [13] V. Katkovnik, J. Astola. Compressive sensing computational ghost imaging. J. Opt. Soc. Am. A, 29, 1556-1567(2012).

    [14] L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, A. K. Anand. Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm. Opt. Lasers Eng., 111, 108-113(2018).

    [15] A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, J. Bertolotti. Blind ghost imaging. Optica, 6, 460-464(2019).

    [16] P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, G. Genty. Ghost imaging in the time domain. Nat. Photonics, 10, 167-170(2016).

    [17] P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, G. Genty. Temporal ghost imaging. Frontiers in Optics 2015, FTh4D.4(2015).

    [18] F. Devaux, P. A. Moreau, S. Denis, E. Lantz. Computational temporal ghost imaging. Optica, 3, 698-701(2016).

    [19] F. Devaux, K. P. Huy, S. Denis, E. Lantz, P. A. Moreau. Temporal ghost imaging with pseudo-thermal speckle light. J. Opt., 19, 024001(2016).

    [20] P. Clemente, V. Durán, E. Tajahuerce, J. Lancis. Optical encryption based on computational ghost imaging. Opt. Lett., 35, 2391-2393(2010).

    [21] M. Tanha, R. Kheradmand. Gray-scale and color optical encryption based on computational ghost imaging. Appl. Phys. Lett., 101, 101108(2012).

    [22] L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, H. T. Wang. Encryption of ghost imaging. Phys. Rev. A, 88, 013852(2013).

    [23] W. Chen, X. Chen. Marked ghost imaging. Appl. Phys. Lett., 104, 251109(2014).

    [24] W. Chen, X. Chen. Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation. Opt. Lasers Eng., 73, 123-127(2015).

    [25] W. Chen. Ghost identification based on single-pixel imaging in big data environment. Opt. Express, 25, 16509-16516(2017).

    [26] L. Sui, X. Zhao, C. Huang, A. Tian, A. K. Anand. Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms. Opt. Lasers Eng., 113, 29-37(2019).

    [27] J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, S. Liu. Multiple-image encryption based on computational ghost imaging. Opt. Commun., 359, 38-43(2016).

    [28] X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, H. Chen. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme. Opt. Lasers Eng., 102, 106-111(2018).

    [29] X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, H. Chen. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain. Opt. Lasers Eng., 96, 7-16(2017).

    [30] X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, H. Chen. Multiple-image encryption based on compressive ghost imaging and coordinate sampling. IEEE Photon. J., 8, 3900511(2017).

    [31] Z. Pan, L. H. Zhang. Optical cryptography based temporal ghost imaging with chaotic laser. IEEE Photon. Technol. Lett., 29, 1289-1292(2017).

    [32] W. Yu, M. Li, X. Yao, X. Liu, L. Wang, G. Zhai. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express, 22, 7133-7144(2014).

    [33] R. Kapoor, R. Gupta, R. Kumar, S. Jha. New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems. Wireless Netw., 8, 1-13(2018).

    [34] S. H. Chen, C. W. Chow. Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photon. J., 6, 7904106(2014).

    [35] Y. K. Xu, S. H. Sun, W. T. Liu, G. Z. Tang, J. Y. Liu, P. X. Chen. Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging. Opt. Express, 26, 99-107(2018).

    [36] T. Zhao, Q. Ran, L. Yuan, Y. Chi, J. Ma. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography. Opt. Lasers Eng., 83, 48-58(2016).

    [37] Y. Kang, L. Zhang, D. Zhang. Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser. Opt. Commun., 426, 535-540(2018).

    [38] S. Yuan, J. Yao, X. Liu, X. Zhou, Z. Li. Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging. Opt. Commun., 365, 180-185(2016).

    [39] J. Ke, L. Yi, G. Xia, W. Hu. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett., 43, 1323-1326(2018).

    Yi Kang, Leihong Zhang, Hualong Ye, Mantong Zhao, Saima Kanwal, Chunyan Bai, Dawei Zhang, "One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access," Photonics Res. 7, 1370 (2019)
    Download Citation