• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1201006 (2022)
Nanguo Li1, Can Liu2、3、*, Pengfei Zhang1, Minwen Xiang1, Bao Tang4, Weinian Yan5, Qiang Kan5, Qiaoyin Lu1、**, and Weihua Guo1、***
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Ori-Chip Optoelectronics Technology Co., Ltd., Ningbo 315000, Zhejiang, China
  • 3College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 4Accelink Technologies Co., Ltd., Wuhan 430074, Hubei, China
  • 5Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/CJL202249.1201006 Cite this Article Set citation alerts
    Nanguo Li, Can Liu, Pengfei Zhang, Minwen Xiang, Bao Tang, Weinian Yan, Qiang Kan, Qiaoyin Lu, Weihua Guo. 850 nm Single-Mode Surface-Emitting Distributed Feedback Lasers[J]. Chinese Journal of Lasers, 2022, 49(12): 1201006 Copy Citation Text show less
    References

    [1] Buus J[M]. Single frequency semiconductor lasers(1991).

    [2] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [3] Liu A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 47, 0701005(2020).

    [4] Wang X Y, Cui B F, Li C F et al. Research progress of transverse mode control for vertical cavity surface emitting lasers[J]. Laser & Optoelectronics Progress, 58, 0700008(2021).

    [5] Feng M, Wu C H, Holonyak N. Oxide-confined VCSELs for high-speed optical interconnects[J]. IEEE Journal of Quantum Electronics, 54, 2400115(2018).

    [6] Chang Y C, Wang C S, Coldren L A. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation[J]. Electronics Letters, 43, 1022-1023(2007).

    [7] Kao H Y, Tsai C T, Leong S F et al. Comparison of single-/ few-/ multi-mode 850 nm VCSELs for optical OFDM transmission[J]. Optics Express, 25, 16347-16363(2017).

    [8] Zhang Y, Wang Y Z, Ning J F et al. 795 nm single-mode vertical-cavity surface-emitting laser[J]. Semiconductor Technology, 42, 17-22(2017).

    [9] Martinsson H, Vukusic J A, Grabberr M et al. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief[J]. IEEE Photonics Technology Letters, 11, 1536-1538(1999).

    [10] Unold H J, Mahmoud S W Z, Jager R et al. Large-area single-mode VCSELs and the self-aligned surface relief[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 386-392(2001).

    [11] Haglund E, Jahed M, Gustavsson J S et al. High-power single transverse and polarization mode VCSEL for silicon photonics integration[J]. Optics Express, 27, 18892-18899(2019).

    [12] Wei S M, Xu C, Deng J et al. Single-fundamental-mode 850 nm surface relief VCSEL[J]. Chinese Physics Letters, 29, 084208(2012).

    [13] Yokouchi N, Danner A J, Choquette K D. Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1439-1445(2003).

    [14] Unold H J, Golling M, Michalzik R et al. Photonic crystal surface-emitting lasers: tailoring waveguiding for single-mode emission[C], 520-521(2001).

    [15] Fryslie S T M, Denardo N, Choquette K D. Single mode photonic crystal vertical cavity lasers for improved modulation bandwidth distance product[C], SF1L.8(2016).

    [16] Yuan J, Zhang Z P, Xie Y Y. Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 47, 0606005(2018).

    [17] Chang-Hasnain C. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics and Photonics, 4, 379-440(2012).

    [18] Adachi K, Suzuki T, Tanaka S. A lens-integrated surface-emitting DFB laser and its application to cost-effective single-mode optical sub assembly[J]. IEICE Transactions on Electronics, E101.C, 566-573(2018).

    [19] Dan B. High-power monolithic single-mode diode lasers employing active photonic lattices[J]. Proceedings of SPIE, 4993, 20-27(2003).

    [20] Macomber S H, Mott J S, Noll R J et al. Surface-emitting distributed feedback semiconductor laser[J]. Applied Physics Letters, 17, 472-475(1987).

    [21] Liu C, Zhang P F, Xiang M W et al. Single-mode surface-emitting DFB lasers with a large-area oxidized aperture based on the surface grating[J]. Optics Letters, 45, 3573-3576(2020).

    [22] Casey H C, Jr[M]. Heterostructure lasers, Part A: fundamental principles(1978).

    [23] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 43, 2327-2335(1972).

    [24] Buus J, Amann M C, Blumenthal D J[M]. Tunable laser diodes and related optical sources(2005).

    [25] Hayashi Y, Mukaihara T, Hatori N et al. Lasing characteristics of low-threshold oxide confinement InGaAs-GaAlAs vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 7, 1234-1236(1995).

    [26] Baveja P P, Kogel B, Westbergh P et al. Impact of device parameters on thermal performance of high-speed oxide-confined 850-nm VCSELs[J]. IEEE Journal of Quantum Electronics, 48, 17-26(2012).

    Nanguo Li, Can Liu, Pengfei Zhang, Minwen Xiang, Bao Tang, Weinian Yan, Qiang Kan, Qiaoyin Lu, Weihua Guo. 850 nm Single-Mode Surface-Emitting Distributed Feedback Lasers[J]. Chinese Journal of Lasers, 2022, 49(12): 1201006
    Download Citation