• Nano-Micro Letters
  • Vol. 15, Issue 1, 222 (2023)
Yao Gao1,3,†,*, Lei Fan2,†, Rui Zhou1..., Xiaoqiong Du1, Zengbao Jiao2,** and Biao Zhang1,***|Show fewer author(s)
Author Affiliations
  • 1Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon Hong Kong, People’s Republic of China
  • 2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon Hong Kong, People’s Republic of China
  • 3Department of Physics, The Chinese University of Hong Kong, New Territories Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01190-7 Cite this Article
    Yao Gao, Lei Fan, Rui Zhou, Xiaoqiong Du, Zengbao Jiao, Biao Zhang. High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation[J]. Nano-Micro Letters, 2023, 15(1): 222 Copy Citation Text show less
    References

    [1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012).

    [2] D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015).

    [3] Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022).

    [4] A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg et al., Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133(51), 20914–20921 (2011).

    [5] W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023).

    [6] J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14(1), 50 (2022).

    [7] G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019).

    [8] M. Obrovac, V. Chevrier, Alloy negative electrodes for li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014).

    [9] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4985 (2013).

    [10] B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao et al., Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci. Adv. 5(11), eaax0651 (2019).

    [11] A. Sciences, Elements electrical conductivity reference table (2023). https://www.angstromsciences.com/elements-electrical-conductivity

    [12] K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018).

    [13] K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi et al., Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 56(7), 1539–1545 (2008).

    [14] G. Zhang, X. Li, D. Wei, H. Yu, J. Ye et al., Synergistic engineering of structural and electronic regulation of In2Se3 for ultrastable Li-ion battery. Chem. Eng. J. 453, 139841 (2023).

    [15] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2), 1522–1531 (2012).

    [16] R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010).

    [17] J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan et al., Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 29(48), 1700523 (2017).

    [18] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012).

    [19] S. Imtiaz, I.S. Amiinu, D. Storan, N. Kapuria, H. Geaney et al., Dense silicon nanowire networks grown on a stainless steel fiber cloth: a flexible and robust anode for lithium-ion batteries. Adv. Mater. 33(52), 2105917 (2021).

    [20] Y.K. Jeong, W. Huang, R.A. Vila, W.X. Huang, J.Y. Wang et al., Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high-performance lithium-ion battery anodes. Adv. Energy Mater. 10(41), 2002108 (2020).

    [21] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008).

    [22] J. Ryu, D. Hong, S. Choi, S. Park, Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10(2), 2843–2851 (2016).

    [23] S.W. Lee, H.W. Lee, I. Ryu, W.D. Nix, H.J. Gao et al., Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6(1), 7533 (2015).

    [24] M.Y. Ge, J.P. Rong, X. Fang, C.W. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12(5), 2318–2323 (2012).

    [25] H. Tian, H. Tian, W. Yang, F. Zhang, W. Yang et al., Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31(25), 2101796 (2021).

    [26] S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow beta-SIC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14(9), 11548–11557 (2020).

    [27] Y. Yu, J. Zhu, K. Zeng, M. Jiang, Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. 9(6), 3472–3481 (2021).

    [28] C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013).

    [29] S. Choi, T.-W. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348), 279–283 (2017).

    [30] Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui et al., High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5(8), 1401826 (2015).

    [31] M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14(1), 87 (2022).

    [32] Y. Yang, S. Liu, Z. Dong, Z. Huang, C. Lu et al., Hierarchical conformal coating enables highly stable microparticle Si anodes for advanced Li-ion batteries. Appl. Mater. Today 26, 101403 (2022).

    [33] D. Wang, M. Gao, H. Pan, J. Wang, Y. Liu, High performance amorphous-si@siox/c composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 256, 190–199 (2014).

    [34] Y. Lee, T. Lee, J. Hong, J. Sung, N. Kim et al., Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 30(40), 2004841 (2020).

    [35] A. Heist, D.M. Piper, T. Evans, S.C. Kim, S.S. Han et al., Self-contained fragmentation and interfacial stability in crude micron-silicon anodes. J. Electrochem. Soc. 165(2), A244–A250 (2018).

    [36] X. Qu, X. Zhang, Y. Wu, J. Hu, M. Gao, An eggshell-structured n-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J. Power Sources 443, 227265 (2019).

    [37] J. Chen, X.L. Fan, Q. Li, H.B. Yang, M.R. Khoshi et al., Electrolyte design for LIF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020).

    [38] J. Im, J.D. Kwon, D.H. Kim, S. Yoon, K.Y. Cho, P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 6(3), 2101052 (2022).

    [39] S. Cho, W. Jung, G.Y. Jung, K. Eom, High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. J. Power Sources 454, 227931 (2020).

    [40] P.R. Abel, A.M. Chockla, Y.-M. Lin, V.C. Holmberg, J.T. Harris et al., Nanostructured Si(1–x)gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3), 2249–2257 (2013).

    [41] L.Y. Beaulieu, T.D. Hatchard, A. Bonakdarpour, M.D. Fleischauer, J.R. Dahn, Reaction of li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150(11), A1457 (2003).

    [42] M.D. Fleischauer, J.R. Dahn, Combinatorial investigations of the Si–Al–Mn system for Li-ion battery applications. J. Electrochem. Soc. 151(8), A1216–A1221 (2004).

    [43] T.D. Hatchard, M.N. Obrovac, J.R. Dahn, A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with L3i. J. Electrochem. Soc. 153(2), A282 (2006).

    [44] L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo et al., The electrochemical reaction of Li with amorphous Si–Sn alloys. J. Electrochem. Soc. 150(2), A149–A156 (2003).

    [45] M. Suzuki, J. Suzuki, K. Sekine, T. Takamura, Li insertion/extraction characteristics of a vacuum-deposited Si–Sn two-component film. J. Power Sources 146(1–2), 452–456 (2005).

    [46] Y. Ma, J. Li, Y. Wei, W. Liu, X. Zhang et al., Synthesis of Sn–Si composite films by co-sputtering technique for high-capacity microbattery anodes. Ionics 27(8), 3301–3314 (2021).

    [47] Z. Dong, W. Du, C. Yan, C. Zhang, G. Chen et al., A novel tin-bonded silicon anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(38), 45578–45588 (2021).

    [48] J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li et al., A novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion batterya novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion battery. Sci. Rep. 6(1), 1–7 (2016).

    [49] A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 24(19), 3738–3745 (2012).

    [50] C.Y. Zhu, Y. Zhang, Z.H. Ma, Y.F. Zhu, L.Q. Li, Mesoporous-Si embedded and anchored by hierarchical Sn nano-particles as promising anode for lithium-ion batteries. J. Alloys Compd. 832, 154935 (2020).

    [51] H. Seo, H.-S. Kim, K. Kim, H. Choi, J.-H. Kim, Magnesium silicide-derived porous Sb–Si–C composite for stable lithium storage. J. Alloys Compd. 782, 525–532 (2019).

    [52] C. Yuan, S. Liu, Y. Yang, M. Yu, Y. Tian et al., Structure-controllable binary nanoporous-silicon/antimony alloy as anode for high-performance lithium-ion batteries. ChemElectroChem 5(23), 3809–3816 (2018).

    [53] G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953).

    [54] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154(3), A156 (2007).

    [55] T. Hatchard, J. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151(6), A838 (2004).

    [56] J.M. Whiteley, J.W. Kim, D.M. Piper, S.-H. Lee, High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries. J. Electrochem. Soc. 163(2), A251 (2015).

    [57] K.C. Hewitt, Y.L. Beaulieu, J.R. Dahn, Electrochemistry of INSB as a Li insertion host: problems and prospects. J. Electrochem. Soc. 148(5), A402 (2001).

    [58] B. Key, R. Bhattacharyya, M. Morcrette, V. Seznec, J.-M. Tarascon et al., Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131(26), 9239–9249 (2009).

    [59] M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau et al., A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6(7), 2145–2155 (2013).

    [60] X. Yang, N. Tachikawa, Y. Katayama, L. Li, J. Yan, Effect of the pillar size on the electrochemical performance of laser-induced silicon micropillars as anodes for lithium-ion batteries. Appl. Sci. 9(17), 3623 (2019).

    [61] R. Kataoka, Y. Oda, R. Inoue, N. Kawasaki, N. Takeichi et al., Silicon micropowder negative electrode endures more than 1000 cycles when a surface-roughened clad current collector is used. J. Power Sources 346, 128–133 (2017).

    [62] C. Luo, L. Du, W. Wu, H. Xu, G. Zhang et al., Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 6(10), 12621–12629 (2018).

    [63] S. Niu, M. Zhao, L. Ma, F. Zhao, Y. Zhang et al., High performance polyurethane–polyacrylic acid polymer binders for silicon microparticle anodes in lithium-ion batteries. Sustain. Energy Fuels 6(5), 1301–1311 (2022).

    [64] Y. Yang, C. Ni, M. Gao, J. Wang, Y. Liu et al., Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for li-ion batteries. Energy Storage Mater. 14, 279–288 (2018).

    [65] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010).

    [66] Y.Y. Liu, M.H. Sun, Y.F. Yuan, Q. Wu, H.X. Wang et al., Accommodation of silicon in an interconnected copper network for robust li-ion storage. Adv. Funct. Mater. 30(14), 1910249 (2020).

    [67] Q. Liu, X. Hu, Y. Liu, Z. Wen, One-step low-temperature molten salt synthesis of two-dimensional Si@ SiOx@ C hybrids for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 12(50), 55844–55855 (2020).

    [68] P. Limthongkul, Y.-I. Jang, N.J. Dudney, Y.-M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51(4), 1103–1113 (2003).

    [69] M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93 (2004).

    [70] Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021).

    [71] Y. Gao, Z. Hou, R. Zhou, D. Wang, X. Guo et al., Critical roles of mechanical properties of solid electrolyte interphase for potassium metal anodes. Adv. Funct. Mater. 32, 2112399 (2022).

    [72] Y. Gao, B. Zhang, Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. 35(18), 2205421 (2023).

    [73] M. Kim, Z.Z. Yang, I. Bloom, Review-the lithiation/delithiation behavior of Si-based electrodes: a connection between electrochemistry and mechanics. J. Electrochem. Soc. 168(1), 9 (2021).

    [74] K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, Z. Suo, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94, s226–s235 (2011).

    [75] Y.-T. Cheng, M.W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508 (2010).

    [76] Z. Cui, F. Gao, J. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012).

    [77] M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107(4), 045503 (2011).

    [78] X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7(11), 749–756 (2012).

    [79] M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix et al., Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24(45), 6034–6041 (2012).

    [80] H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu et al., A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349–361 (2014).

    [81] X.H. Liu, H. Zheng, L. Zhong, S. Huan, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011).

    [82] M. Wang, X. Xiao, X. Huang, Study of lithium diffusivity in amorphous silicon via finite element analysis. J. Power Sources 307, 77–85 (2016).

    [83] L.A. Berla, S.W. Lee, I. Ryu, Y. Cui, W.D. Nix, Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 258, 253–259 (2014).

    Yao Gao, Lei Fan, Rui Zhou, Xiaoqiong Du, Zengbao Jiao, Biao Zhang. High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation[J]. Nano-Micro Letters, 2023, 15(1): 222
    Download Citation