• Chinese Optics Letters
  • Vol. 22, Issue 3, 031601 (2024)
Qiming Zhao1, Shouyan Zhang1, Shuxian Wang1,*, Gang Wang2,**..., Haohai Yu1,*** and Huaijin Zhang1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/COL202422.031601 Cite this Article Set citation alerts
    Qiming Zhao, Shouyan Zhang, Shuxian Wang, Gang Wang, Haohai Yu, Huaijin Zhang, "Saturable absorption and visible pulse modulation of few-layer topological nodal-line semimetal HfGeTe," Chin. Opt. Lett. 22, 031601 (2024) Copy Citation Text show less
    References

    [1] B. C. Young, F. C. Cruz, W. M. Itano et al. Visible lasers with subhertz linewidths. Phys. Rev. Lett., 82, 3799(1999).

    [2] C. E. Baker. Laser display technology. IEEE Spectr., 5, 39(1968).

    [3] J. L. Hall. Stabilized lasers and precision measurements. Science, 202, 147(1978).

    [4] K. F. Gibson, W. G. Kernohant. Lasers in medicine: a review. J. Med. Eng. Technol., 17, 51(1993).

    [5] C. T. Tsai, C. H. Cheng, H. C. Kuo et al. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).

    [6] M. M. Fejer. Nonlinear optical frequency conversion. Phys. Today, 47, 25(1994).

    [7] S. Nakamura. Nobel lecture: background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys., 87, 1139(2015).

    [8] S. Luo, X. Yan, Q. Cui et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt. Commun., 380, 357(2016).

    [9] S. Ding, H. Ren, Y. Zou et al. Single crystal growth and property investigation of Dy3+ and Tb3+ co-doped Gd3Sc2Al3O12 (GSAG): multiple applications for GaN blue LD pumped all-solid-state yellow lasers and UV or blue light chip excited solid-state lighting. J. Mater. Chem. C, 9, 9532(2021).

    [10] M. He, S. Chen, Q. Na et al. Watt-level Pr3+:YLF deep red laser pumped by a fiber-coupled blue LD module or a single-emitter blue LD. Chin. Opt. Lett., 18, 011405(2020).

    [11] C. Körner, R. Mayerhofer, M. Hartmann et al. Physical and material aspects in using visible laser pulses of nanosecond duration for ablation. Appl. Phys. A, 63, 123(1996).

    [12] T. J. Allen, P. C. Beard. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express, 7, 1260(2016).

    [13] Z. Luo, D. Wu, B. Xu et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 8, 1066(2016).

    [14] J. Zou, Q. Ruan, X. Zhang et al. Visible-wavelength pulsed lasers with low-dimensional saturable absorbers. Nanophotonics, 9, 2273(2020).

    [15] H. Tanaka, S. Kalusniak, M. Badtke et al. Visible solid-state lasers based on Pr3+ and Tb3+. Prog. Quantum Electron., 84, 100411(2022).

    [16] B. Yan, S. C. Zhang. Topological materials. Rep. Prog. Phys., 75, 096501(2012).

    [17] H. Weng, R. Yu, X. Hu et al. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys., 64, 227(2015).

    [18] C. Mondal, C. K. Barman, A. Alam et al. Broken symmetry driven phase transitions from a topological semimetal to a gapped topological phase in SrAgAs. Phys. Rev. B, 99, 205112(2019).

    [19] M. Sato, Y. Ando. Topological superconductors: a review. Rep. Prog. Phys., 80, 076501(2017).

    [20] D. Wu, Z. Cai, Y. Zhong et al. 635-nm visible Pr3+-doped ZBLAN fiber lasers Q-switched by topological insulators SAs. IEEE Photon. Technol. Lett., 27, 2379(2015).

    [21] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [22] M. Sprinkle, D. Siegel, Y. Hu et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett., 103, 226803(2009).

    [23] P. Kumar, F. Shahzad, S. Yu et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 94, 494(2015).

    [24] L. A. Ponomarenko, R. Yang, T. M. Mohiuddin et al. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett., 102, 206603(2009).

    [25] Q. Bao, H. Zhang, Y. Wang et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).

    [26] R. R. Nair, P. Blake, A. N. Grigorenko et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [27] C. Fang, H. Weng, X. Dai et al. Topological nodal line semimetals. Chin. Phys. B, 25, 117106(2016).

    [28] R. Singha, A. K. Pariari, B. Satpati et al. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci., 114, 2468(2017).

    [29] M. B. Schilling, L. M. Schoop, B. V. Lotsch et al. Flat optical conductivity in ZrSiS due to two-dimensional Dirac bands. Phys. Rev. Lett., 119, 187401(2017).

    [30] S. Xue, M. Wang, Y. Li et al. Observation of nodal-line plasmons in ZrSiS. Phys. Rev. Lett., 127, 186802(2021).

    [31] Y. Liu, G. Dhakal, A. P. Sakhya et al. Ultrafast relaxation of acoustic and optical phonons in a topological nodal-line semimetal ZrSiS. Commun. Phys., 5, 203(2022).

    [32] Z. Cheng, Z. Zhang, H. Sun et al. Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES. APL Mater., 7, 051105(2019).

    [33] Q. Zhao, L. Chen, F. Liang et al. Angular engineering strategy for enhanced surface nonlinear frequency conversion in centrosymmetric topological semimetal HfGe0.92Te. Adv. Mater.(2024).

    [34] S. Chi, F. Liang, H. Chen et al. Surface nonlinear optics on centrosymmetric Dirac nodal-line semimetal ZrSiS. Adv. Mater., 32, 1904498(2020).

    [35] L. Chen, L. Zhou, Y. Zhou et al. Multiple Dirac points including potential spin-orbit Dirac points in nonsymmorphic HfGe0.92Te. Sci. China Phys. Mech. Astron., 66, 217011(2023).

    [36] P. C. Canfield, T. Kong, U. S. Kaluarachchi et al. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag., 96, 84(2016).

    [37] W. Kohn. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys., 71, 1253(1999).

    [38] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169(1996).

    [39] W. D. Tan, C. Y. Su, R. J. Knize et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett., 96, 031106(2010).

    [40] M. Demesh, D. T. Marzahl, A. Yasukevich et al. Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber. Opt. Lett., 42, 4687(2017).

    [41] L. Ollenburg, H. Tanaka, C. Kränkel. New saturable absorbers for Q-switched visible lasers. Laser Congress 2020 (ASSL, LAC), ATu2A.6(2020).

    [42] Y. Zhang, S. Wang, D. Wang et al. Atomic-layer molybdenum sulfide passively modulated green laser pulses. IEEE Photon. Technol. Lett., 28, 197(2016).

    [43] Z. Luo, D. Wu, B. Xu et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 8, 1066(2016).

    [44] S. Luo, X. Yan, B. Xu et al. Few-layer Bi2Se3-based passively Q-switched Pr: YLF visible lasers. Opt. Commun., 406, 61(2018).

    [45] Y. Zhang, Y. Yang, L. Zhang et al. Watt-level continuous-wave and passively Q-switched red lasers pumped by a single blue laser diode. Chin. Opt. Lett., 17, 071402(2019).

    [46] B. Xu, S. Luo, X. Yan et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1900507(2016).

    [47] G. J. Spühler, R. Paschotta, R. Fluck et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B, 16, 376(1999).

    [48] N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas et al. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C, 117, 6842(2013).

    [49] S. Wang, Y. Zhang, J. Xing et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Appl. Phys. Lett., 107, 161103(2015).

    [50] Q. Yang, F. Zhang, N. Zhang et al. Few-layer MXene Ti3C2Tx (T= F, O, or OH) saturable absorber for visible bulk laser. Opt. Mater. Express, 9, 1795(2019).

    [51] B. Yan, B. Zhang, H. Nie et al. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 10, 20171(2018).

    [52] F. Gao, G. Zhang, Y. Liu et al. Dual-loss-modulated Q-switched YVO4/Nd:YVO4 laser based on both Bi2Se3 and Cr4+:YAG. Optik, 265, 169493(2022).

    [53] D. Lu, Z. Pan, R. Zhang et al. Passively Q-switched ytterbium-doped ScBO3 laser with black phosphorus saturable absorber. Opt. Eng., 55, 081312(2016).

    [54] D. Wu, Z. Cai, Y. Zhong et al. Compact passive Q-switching Pr3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber. IEEE J. Sel. Top. Quantum Electron., 23, 0900106(2016).

    [55] Y. Zhong, Z. Cai, D. Wu et al. Passively Q-switched red Pr3+-doped fiber laser with graphene-oxide saturable absorber. IEEE Photon. Technol. Lett., 28, 1755(2016).

    [56] S. Kajikawa, M. Yoshida, O. Ishii et al. Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene. Opt. Commun., 424, 13(2018).

    Qiming Zhao, Shouyan Zhang, Shuxian Wang, Gang Wang, Haohai Yu, Huaijin Zhang, "Saturable absorption and visible pulse modulation of few-layer topological nodal-line semimetal HfGeTe," Chin. Opt. Lett. 22, 031601 (2024)
    Download Citation