• Chinese Journal of Lasers
  • Vol. 50, Issue 8, 0802201 (2023)
Lidong Yu1、2, Tianxuan Bian1、2, Yunteng Qu1、3, Beibei Zhang2, and Yang Bai1、2、3、*
Author Affiliations
  • 1Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, Shaanxi, China
  • 2State Key Laboratory of Photon-Technology in Western China Energy, Xi’an 710127, Shaanxi, China
  • 3Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Xi’an 710127, Shaanxi, China
  • show less
    DOI: 10.3788/CJL220866 Cite this Article Set citation alerts
    Lidong Yu, Tianxuan Bian, Yunteng Qu, Beibei Zhang, Yang Bai. Effect of Laser Parameters on Corrosion Resistance of Laser Melting Layer on Q235B Steel Surface[J]. Chinese Journal of Lasers, 2023, 50(8): 0802201 Copy Citation Text show less
    Schematic of laser melting unit, where the inset shows laser beam scanning path and two-dimensional energy distribution
    Fig. 1. Schematic of laser melting unit, where the inset shows laser beam scanning path and two-dimensional energy distribution
    Macroscopic and microscopic images of laser melting layer
    Fig. 2. Macroscopic and microscopic images of laser melting layer
    Dynamic potential polarization curves of laser melting layer at different laser single pulse energy densities and spot overlap rates
    Fig. 3. Dynamic potential polarization curves of laser melting layer at different laser single pulse energy densities and spot overlap rates
    SEM images of laser melting layers with optimal laser single pulse energy density and different spot overlap rates for a single laser scanning. (a) β=70%; (b) β=80%; (c) β=90%
    Fig. 4. SEM images of laser melting layers with optimal laser single pulse energy density and different spot overlap rates for a single laser scanning. (a) β=70%; (b) β=80%; (c) β=90%
    Dynamic potential polarization curves of laser melting layer with different laser scanning times (Eopt=3.82 J/cm2 and β=80%)
    Fig. 5. Dynamic potential polarization curves of laser melting layer with different laser scanning times (Eopt=3.82 J/cm2 and β=80%)
    SEM images of laser melting layers with different laser scanning times n (Eopt=3.82 J/cm2 and β=80%). (a) n=1; (b) n=2;
    Fig. 6. SEM images of laser melting layers with different laser scanning times n (Eopt=3.82 J/cm2 and β=80%). (a) n=1; (b) n=2;
    Sectional SEM image of optimal laser melting layer
    Fig. 7. Sectional SEM image of optimal laser melting layer
    EDS spectra and XRD patterns of tested samples. (a) EDS spectrum of substrate; (b) EDS spectrum of alkaline blackening layer; (c) EDS spectrum of optimal laser melting layer; (d) XRD patterns
    Fig. 8. EDS spectra and XRD patterns of tested samples. (a) EDS spectrum of substrate; (b) EDS spectrum of alkaline blackening layer; (c) EDS spectrum of optimal laser melting layer; (d) XRD patterns
    Electrochemical test of corrosion resistant layers. (a) Dynamic potential polarization curves; (b) Nyquist curves; (c) Bode plots
    Fig. 9. Electrochemical test of corrosion resistant layers. (a) Dynamic potential polarization curves; (b) Nyquist curves; (c) Bode plots
    EIS equivalent circuit
    Fig. 10. EIS equivalent circuit
    Microscopic morphologies of two corrosion resistant layers. (a)(d) Thickness of cut surfaces; (b)(e) three-dimensional
    Fig. 11. Microscopic morphologies of two corrosion resistant layers. (a)(d) Thickness of cut surfaces; (b)(e) three-dimensional
    Average power /WEnergy density /(J·cm-2
    101.27
    202.55
    303.82
    405.09
    506.36
    Table 1. Single pulse energy density at different average laser powers
    Spot overlap rate β/%E /(J·cm-2Ecorr /VIcorr /(A·cm-2
    701.27-1.2402.649×10-5
    2.55-1.2202.506×10-5
    3.82-1.0063.069×10-6
    5.09-1.1229.840×10-6
    6.36-1.1309.705×10-5
    801.27-1.2241.352×10-5
    2.55-1.2069.120×10-6
    3.82-0.9732.449×10-6
    5.09-1.0951.845×10-5
    6.36-1.0851.368×10-5
    901.27-1.1893.388×10-5
    2.55-1.2225.495×10-5
    3.82-0.9853.707×10-6
    5.09-1.0981.901×10-5
    6.36-1.1031.892×10-5
    Table 2. Parameters related to kinetic potential polarization curves at different laser single pulse energy densities and spot overlap rates in a single laser scanning
    The number of laser scanning nEcorr /VIcorr /(A·cm-2
    1-0.9732.449×10-6
    2-0.9482.265×10-6
    3-0.9431.990×10-6
    4-0.9361.644×10-6
    5-1.0175.848×10-6
    6-1.0327.967×10-6
    Table 3. Parameters related to kinetic potential polarization curves with different laser scanning times (Eopt=3.82 J/cm2 and β=80%)
    Layer No.Point No.Mass fraction /%
    FeOC
    Layer aa197.611.341.05
    a297.621.261.12
    a397.601.291.11
    Layer bb190.278.750.98
    b290.208.791.01
    b390.078.911.02
    Layer cc183.8315.240.93
    c283.4815.530.99
    c384.0315.030.94
    Layer dd183.2515.840.91
    d282.9716.090.94
    d383.2415.870.89
    Table 4. EDS analysis data at different thicknesses on the section of optimal laser melting layer
    SampleMass fraction /%
    FeOC
    Substrate97.661.241.10
    Alkaline blackening layer86.1812.870.95
    Laser melting layer83.8715.200.93
    Table 5. EDS analysis data of samples to be tested
    SpecimenR1 /(Ω·cm2Q1 /μSm1R2 /(Ω·cm2Q2 /μSm2Rct /(Ω·cm2χ2 /10-3
    Alkaline blackening layer29.21270.819410.20.76520.91.21
    Laser melting layer25.12240.925274.20.851536.72.91
    Table 6. Fitting parameter values of EIS equivalent circuit
    Lidong Yu, Tianxuan Bian, Yunteng Qu, Beibei Zhang, Yang Bai. Effect of Laser Parameters on Corrosion Resistance of Laser Melting Layer on Q235B Steel Surface[J]. Chinese Journal of Lasers, 2023, 50(8): 0802201
    Download Citation