• Photonics Insights
  • Vol. 3, Issue 2, R03 (2024)
Yingjie Li1、†, Jingtian Hu1, Yixuan Zeng1, Qinghai Song1、2、*, Cheng-Wei Qiu3, and Shumin Xiao1、2、4、*
Author Affiliations
  • 1Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, China
  • 2Pengcheng Laboratory, Shenzhen, China
  • 3Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
  • show less
    DOI: 10.3788/PI.2024.R03 Cite this Article Set citation alerts
    Yingjie Li, Jingtian Hu, Yixuan Zeng, Qinghai Song, Cheng-Wei Qiu, Shumin Xiao. Recent progress on structural coloration[J]. Photonics Insights, 2024, 3(2): R03 Copy Citation Text show less
    References

    [1] S. E. Palmer et al. Visual aesthetics and human preference. Annu. Rev. Psychol., 64, 77(2013).

    [2] M. Taniguchi, J. S. Lindsey. Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chem. Rev., 117, 344(2017).

    [3] D. Zhao, J. Tao. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci., 6, 261(2015).

    [4] P. Vukusic, J. R. Sambles. Photonic structures in biology. Nature, 424, 852(2003).

    [5] N. Okada et al. Rendering Morpho butterflies based on high accuracy nano-optical simulation. J. Opt., 42, 25(2013).

    [6] P. Vukusic et al. Structural colour - Colour mixing in wing scales of a butterfly. Nature, 404, 457(2000).

    [7] C. Finet et al. Multi-scale dissection of wing transparency in the clearwing butterfly Phanus vitreus. J. R. Soc. Interface, 20, 20230135(2023).

    [8] J. Zi et al. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci., 100, 12576(2003).

    [9] F. Liu et al. Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera). Phys. Rev. E, 77, 012901(2008).

    [10] J. Teyssier et al. Photonic crystals cause active colour change in chameleons. Nat. Commun., 6, 6368(2015).

    [11] S. O. Aston et al. Jet printing with reactive dyes. J. Soc. Dyers Colour., 109, 147(1993).

    [12] G. K. Starkweather. Electronic color printing technology, 435(1996).

    [13] J. Chen et al. Eco-friendly color printing using transparent wood paper. Adv. Opt. Mater., 11, 2203093(2023).

    [14] V. Caligiuri et al. Biodegradable and insoluble cellulose photonic crystals and metasurfaces. ACS Nano, 14, 9502(2020).

    [15] J. Zhou et al. Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed., 56, 10462(2017).

    [16] A. Espinha et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics, 12, 343(2018).

    [17] C.-H. Lee et al. Near-ultraviolet structural colors generated by aluminum nanodisk array for bright image printing. Adv. Opt. Mater., 6, 1800231(2018).

    [18] Y. He et al. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: a spray coating synthesis for breathable and durable fabrics with saturated structural colors. Adv. Funct. Mater., 32, 2200330(2022).

    [19] D.-Y. Li et al. Tunable structural coloration in eccentric water-in-oil-in-water droplets. Nano Lett., 23, 9657(2023).

    [20] Y. Yang et al. Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nat. Commun., 14, 793(2023).

    [21] Y. Wang et al. Bio-inspired shape-memory structural color hydrogel film. Sci. Bull., 67, 512(2022).

    [22] J. Perkins et al. Color tunable, lithography-free refractory metal–oxide metacoatings with a graded refractive index profile. Nano Lett., 23, 2601(2023).

    [23] S. Chen et al. Tunable structural color images by UV-patterned conducting polymer nanofilms on metal surfaces. Adv. Mater., 33, 2102451(2021).

    [24] N. Priscilla et al. Optical janus effect in large area multilayer plasmonic films. Adv. Photonics Res., 3, 2100333(2022).

    [25] J. Li et al. Tunable structural colors in all-dielectric photonic crystals using energetic ion beams. Opt. Express, 30, 23463(2022).

    [26] H. S. Kang et al. Printable and rewritable full block copolymer structural color. Adv. Mater., 29, 1700084(2017).

    [27] Y. Wang et al. Synthesis of ultrathin TiO2/Ti films with tunable structural color. Appl. Opt., 55, 10002(2016).

    [28] A. S. Rana et al. Engineering the absorption spectra of thin film multilayer absorbers for enhanced color purity in CMY color filters. Opt. Mater. Express, 10, 268(2020).

    [29] B. Wu et al. Large-scale reflective optical Janus color materials. Nanotechnology, 31, 225301(2020).

    [30] S. Miao et al. Freeze-derived heterogeneous structural color films. Nat. Commun., 13, 4044(2022).

    [31] J. Zhang et al. Sessile microdroplet-based writing board for patterning of structural colored hydrogels. Adv. Mater. Interfaces, 8, 2001201(2021).

    [32] W. Fan et al. Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays. Sci. Adv., 5, eaaw8755(2019).

    [33] Y.-W. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319(2016).

    [34] Q. Fan et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).

    [35] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [36] X. Xie et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 183902(2021).

    [37] M. R. Akram et al. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater., 32, 1907308(2020).

    [38] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [39] E. Maguid et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352, 1202(2016).

    [40] R. C. Devlin et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [41] B. Wang et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623(2020).

    [42] K. Kumar et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol., 7, 557(2012).

    [43] D. Franklin et al. Actively addressed single pixel full-colour plasmonic display. Nat. Commun., 8, 15209(2017).

    [44] D. Franklin et al. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proc. Natl. Acad. Sci., 117, 13350(2020).

    [45] K. V. Sreekanth et al. Electrically tunable all-PCM visible plasmonics. Nano Lett., 21, 4044(2021).

    [46] S. G.-C. Carrillo et al. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater., 7, 1801782(2019).

    [47] S. Song et al. Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater., 5, 1600829(2017).

    [48] Q. Ruan et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater., 34, 2108128(2022).

    [49] M. Song et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev., 15, 2000343(2021).

    [50] L. Li et al. High-saturation full-color printing with all-dielectric chiral metasurfaces. ACS Appl. Mater. Interfaces, 1, 1301(2023).

    [51] J. Gu et al. Structural colors based on diamond metasurface for information encryption. Adv. Opt. Mater., 11, 2202826(2023).

    [52] C. Jung et al. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 10, 919(2021).

    [53] S. Choi et al. Chirality-selective all-dielectric metasurface structural color display. Opt. Express, 29, 41258(2021).

    [54] S. Jiang et al. Multilevel anti-counterfeiting based on covert structural features embedded in femtosecond-laser-treated gold nanocluster/graphene hybrid layer. ACS Appl. Mater. Interfaces, 14, 39240(2022).

    [55] D. Franklin et al. Covert infrared image encoding through imprinted plasmonic cavities. Light Sci. Appl., 7, 93(2018).

    [56] V. Lapidas et al. Direct laser printing of high-resolution physically unclonable function anti-counterfeit labels. Appl. Phys. Lett., 120, 261104(2022).

    [57] Y. Zhang et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz., 4, 601(2019).

    [58] J. Y. E. Chan et al. Full geometric control of hidden color information in diffraction gratings under angled white light illumination. Nano Lett., 22, 8189(2022).

    [59] L. Bai et al. Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv. Mater., 30, 1705667(2018).

    [60] X. Zhu et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 3, e1602487(2017).

    [61] L. Qin et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat. Commun., 12, 699(2021).

    [62] Y. Zhang et al. Using cuttlefish ink as an additive to produce-non-iridescent structural colors of high color visibility. Adv. Mater., 27, 4719(2015).

    [63] J. B. Kim et al. Direct writing of customized structural-color graphics with colloidal photonic inks. Sci. Adv., 7, eabj8780(2021).

    [64] S. S. Lee et al. Structural color palettes of core–shell photonic ink capsules containing cholesteric liquid crystals. Adv. Mater., 29, 1606894(2017).

    [65] T. Wang et al. Naked eye plasmonic indicator with multi-responsive polymer brush as signal transducer and amplifier. Nanoscale, 9, 1925(2017).

    [66] J. Jang et al. Self-powered humidity sensor using chitosan-based plasmonic metal–hydrogel–metal filters. Adv. Opt. Mater., 8, 1901932(2020).

    [67] A. Choe et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater., 10, 912(2018).

    [68] Y.-S. Lin, W. Chen. A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing. Opt. Mater., 75, 739(2018).

    [69] A. Kristensen et al. Plasmonic colour generation. Nat. Rev. Mater., 2, 16088(2016).

    [70] L. Huang et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl., 2, e70(2013).

    [71] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [72] M. S. Bin-Alam et al. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [73] A. A. High et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192(2015).

    [74] Y. Huang et al. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection. Opt. Lett., 45, 1707(2020).

    [75] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331(2013).

    [76] F. Ding et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 9, 4111(2015).

    [77] S. Y. Lee et al. Metallic nanodimple arrays for wide-angle coloration via plasmonic and structural resonances. Chem. Mater., 33, 4628(2021).

    [78] Y. Liu et al. Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons. IEEE Trans. Microw. Theory Tech., 70, 4399(2022).

    [79] H. F. Ma et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 8, 146(2014).

    [80] H. Kim et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett., 10, 529(2010).

    [81] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).

    [82] S. Tsesses et al. Tunable photon-induced spatial modulation of free electrons. Nat. Mater., 22, 345(2023).

    [83] A. Smolyaninov et al. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nat. Photonics, 13, 431(2019).

    [84] I. Freestone et al. The Lycurgus Cup — a Roman nanotechnology. Gold Bull., 40, 270(2007).

    [85] Y. Zhao et al. Thermosensitive plasmonic color enabled by sodium metasurface. Adv. Funct. Mater., 33, 2214492(2023).

    [86] H.-C. Wang, O. J. F. Martin. Polarization-controlled chromo-encryption. Adv. Opt. Mater., 11, 2202165(2023).

    [87] P. Cencillo-Abad et al. Ultralight plasmonic structural color paint. Sci. Adv., 9, eadf7207(2023).

    [88] S. Choi et al. Structural color printing via polymer-assisted photochemical deposition. Light Sci. Appl., 11, 84(2022).

    [89] M. Zheng et al. Enhancing plasmonic spectral tunability with anomalous material dispersion. Nano Lett., 21, 91(2021).

    [90] Z. Li et al. Extremely-fine color printing by 2D materials with the synergetic effects of Fabry–Pérot cavity and exciton absorption. Laser Photonics Rev., 16, 2200394(2022).

    [91] G. Si et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 5, 6243(2013).

    [92] S. J. Tan et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett., 14, 4023(2014).

    [93] J. S. Clausen et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett., 14, 4499(2014).

    [94] L. Duempelmann et al. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano, 9, 12383(2015).

    [95] H. Wang et al. Full color generation using silver tandem nanodisks. ACS Nano, 11, 4419(2017).

    [96] B. Zeng et al. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep., 3, 2840(2013).

    [97] H. Hu et al. Direct growth of vertically orientated nanocavity arrays for plasmonic color generation. Adv. Funct. Mater., 30, 2002287(2020).

    [98] D. Inoue et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett., 98, 093113(2011).

    [99] Z. Li et al. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano, 10, 492(2016).

    [100] B.-R. Lu et al. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks. Opt. Lett., 41, 1400(2016).

    [101] C. U. Hail et al. A plasmonic painter’s method of color mixing for a continuous red-green-blue palette. ACS Nano, 14, 1783(2020).

    [102] M. Song et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol., 18, 71(2023).

    [103] K.-T. Lee et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression. Sci. Rep., 9, 14917(2019).

    [104] H. Pan et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media. Nanophotonics, 9, 3385(2020).

    [105] P. Mao et al. Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection. Nat. Commun., 11, 1538(2020).

    [106] J. Kim et al. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv. Opt. Mater., 10, 2101930(2022).

    [107] C. Li et al. Janus structural color from a 2D photonic crystal hybrid with a Fabry–Perot cavity. Adv. Opt. Mater., 6, 1800651(2018).

    [108] Z. Yang et al. Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Adv. Opt. Mater., 4, 1196(2016).

    [109] Y. Wei et al. Silicon metasurface embedded Fabry–Perot cavity enables the high-quality transmission structural color. Opt. Lett., 47, 5344(2022).

    [110] M. ElKabbash et al. Fano resonant optical coatings platform for full gamut and high purity structural colors. Nat. Commun., 14, 3960(2023).

    [111] F. Cheng et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep., 5, 11045(2015).

    [112] A. S. Roberts et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays. ACS Nano, 13, 71(2019).

    [113] M. Miyata et al. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett., 16, 3166(2016).

    [114] J. C. Blake et al. Scalable reflective plasmonic structural colors from nanoparticles and cavity resonances–the cyan-magenta-yellow approach. Adv. Opt. Mater., 10, 2200471(2022).

    [115] L. Duempelmann et al. Four-fold color filter based on plasmonic phase retarder. ACS Photonics, 3, 190(2016).

    [116] Y.-K. R. Wu et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep., 3, 1194(2013).

    [117] L. Cheng et al. Extrinsic polarization-enabled covert plasmonic colors using aluminum nanostructures. Ann. Phys. Lpz., 531, 1900073(2019).

    [118] M. Jiang et al. Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. Mater. Today, 35, 99(2020).

    [119] W. Wang et al. Realizing structural color generation with aluminum plasmonic V-groove metasurfaces. Opt. Express, 25, 20454(2017).

    [120] J. R. Fan et al. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors. Nanoscale, 9, 3416(2017).

    [121] S. U. Lee, B.-K. Ju. Wide-gamut plasmonic color filters using a complementary design method. Sci. Rep., 7, 40649(2017).

    [122] X. Zhuo et al. Colour routing with single silver nanorods. Light Sci. Appl., 8, 39(2019).

    [123] J. Jang et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 14, 15317(2020).

    [124] X. Liu et al. All-dielectric silicon nanoring metasurface for full-color printing. Nano Lett., 20, 8739(2020).

    [125] Y. Nagasaki et al. All-dielectric dual-color pixel with subwavelength resolution. Nano Lett., 17, 7500(2017).

    [126] T. Lee et al. Nearly perfect transmissive subtractive coloration through the spectral amplification of mie scattering and lattice resonance. ACS Appl. Mater. Interfaces, 13, 26299(2021).

    [127] J. Xiang et al. Manipulating the orientations of the electric and magnetic dipoles induced in silicon nanoparticles for multicolor display. Laser Photonics Rev., 12, 1800032(2018).

    [128] J. S. Lee et al. Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. Nat. Commun., 10, 4782(2019).

    [129] H. Park et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett., 14, 1804(2014).

    [130] H. Li et al. All-dielectric high saturation structural colors enhanced by multipolar modulated metasurfaces. Opt. Express, 30, 28954(2022).

    [131] J. Lu et al. A versatile metasurface enabling superwettability for self-cleaning and dynamic color response. Adv. Opt. Mater., 10, 2101781(2022).

    [132] Z. Dong et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett., 17, 7620(2017).

    [133] Y. Han et al. Structural colored fabrics with brilliant colors, low angle dependence, and high color fastness based on the mie scattering of Cu2O spheres. ACS Appl. Mater. Interfaces, 13, 57796(2021).

    [134] S. Sun et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445(2017).

    [135] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298(2014).

    [136] V. Flauraud et al. Silicon nanostructures for bright field full color prints. ACS Photonics, 4, 1913(2017).

    [137] V. Vashistha et al. All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut. ACS Photonics, 4, 1076(2017).

    [138] W. Yang et al. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [139] M. Hentschel et al. Dielectric Mie voids: confining light in air. Light Sci. Appl., 12, 3(2023).

    [140] Z. Dong et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv., 8, eabm4512(2022).

    [141] B. Yang et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv. Opt. Mater., 6, 1701009(2018).

    [142] X. Yuan et al. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films. Surf. Eng., 33, 231(2017).

    [143] Y. Xue et al. Preparation of noniridescent structurally colored PS@TiO2 and Air@C@TiO2 core–shell nanoparticles with enhanced color stability. ACS Appl. Mater. Interfaces, 11, 34355(2019).

    [144] L. Wang et al. Tunable structural colors generated by hybrid Si3N4 and Al metasurfaces. Opt. Express, 30, 7299(2022).

    [145] M. Vega et al. Color engineering of silicon nitride surfaces to characterize the polydopamine refractive index. ChemPhysChem, 19, 3418(2018).

    [146] M. J. Uddin, R. Magnusson. Highly efficient color filter array using resonant Si3N4 gratings. Opt. Express, 21, 12495(2013).

    [147] H. Liu et al. Transfer printing of solution-processed 3D ZnO nanostructures with ultra-high yield for flexible metasurface color filter. Adv. Mater. Interfaces, 9, 2101963(2022).

    [148] H. Liu et al. Dielectric metasurface from solution-phase epitaxy of ZnO nanorods for subtractive color filter application. Adv. Opt. Mater., 9, 2001670(2021).

    [149] Z. Li et al. Application of nanostructured TiO2 in UV photodetectors: a review. Adv. Mater., 34, 2109083(2022).

    [150] B. Bharti et al. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep., 6, 32355(2016).

    [151] J. Wang et al. A review on TiO2−x-based materials for photocatalytic CO2 reduction. Nanoscale, 14, 11512(2022).

    [152] B. Yang et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett., 19, 4221(2019).

    [153] X. Huang et al. All-dielectric metasurfaces color filter arrays designed by evolutionary search. IEEE Photonics J., 13, 1(2021).

    [154] S. S. Panda, R. S. Hegde. Transmission-mode all-dielectric metasurface color filter arrays designed by evolutionary search. J. Nanophotonics, 14, 1(2020).

    [155] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [156] S. S. Panda et al. Robust inverse design of all-dielectric metasurface transmission-mode color filters. Opt. Mater. Express, 10, 3145(2020).

    [157] S. So et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater., 35, 2208520(2023).

    [158] R. Zhu et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun., 12, 2974(2021).

    [159] W. Ma et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater., 34, 2110022(2022).

    [160] O. Khatib et al. Learning the physics of all-dielectric metamaterials with deep lorentz neural networks. Adv. Opt. Mater., 10, 2200097(2022).

    [161] Y. Chen, L. Dal Negro. Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data. APL Photonics, 7, 010802(2022).

    [162] Y. Tang et al. Physics-informed recurrent neural network for time dynamics in optical resonances. Nat. Comput. Sci., 2, 169(2022).

    [163] Y. Chen et al. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express, 28, 11618(2020).

    [164] L. Xu et al. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics, 2, 026003(2020).

    [165] J. Li et al. Single-sized metasurface for simultaneous pseudo-color nanoprinting and holographic image display. Front. nanotechnol., 4, 973348(2022).

    [166] P. Pillai et al. Modified variational autoencoder for inversely predicting plasmonic nanofeatures for generating structural color. Sci. Rep., 13, 3536(2023).

    [167] H. Ma et al. Predicting laser-induced colors of random plasmonic metasurfaces and optimizing image multiplexing using deep learning. ACS Nano, 16, 9410(2022).

    [168] J. Baxter et al. Plasmonic colours predicted by deep learning. Sci. Rep., 9, 8074(2019).

    [169] N. B. Roberts, M. Keshavarz Hedayati. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. Appl. Phys. Lett., 119, 061101(2021).

    [170] Z. Liu et al. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570(2018).

    [171] P. Gómez et al. Neural inverse design of nanostructures (NIDN). Sci. Rep., 12, 22160(2022).

    [172] I. Sajedian et al. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express, 27, 5874(2019).

    [173] A. Clini de Souza et al. Back-propagation optimization and multi-valued artificial neural networks for highly vivid structural color filter metasurfaces. Sci. Rep., 13, 21352(2023).

    [174] Q. He et al. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [175] L. Yang et al. Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research, 2022, 9828757(2022).

    [176] Y. Wu et al. TiO2 metasurfaces: from visible planar photonics to photochemistry. Sci. Adv., 5, eaax0939(2019).

    [177] S. Sun et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano, 12, 2151(2018).

    [178] L. Wang et al. Color printing and encryption with polarization-switchable structural colors on all-dielectric metasurfaces. Nano Lett., 23, 5581(2023).

    [179] G. Li et al. Direction-controllable plasmonic color scanning by using laser-induced bubbles. Adv. Funct. Mater., 31, 2008579(2021).

    [180] Y. Gao et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 12, 8847(2018).

    [181] Z. Li et al. Creation and reconstruction of thermochromic Au nanorods with surface concavity. J. Am. Chem. Soc., 143, 15791(2021).

    [182] C. Ji et al. Quadruple anti-counterfeiting retroreflective structural color films. Adv. Opt. Mater., 10, 2102383(2022).

    [183] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [184] G. Wang et al. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano, 10, 1788(2016).

    [185] Y. Li et al. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett., 19, 7988(2019).

    [186] M. Gugole et al. High-contrast switching of plasmonic structural colors: inorganic versus organic electrochromism. ACS Photonics, 7, 1762(2020).

    [187] S. Zhang et al. Electrochromic modulation of plasmonic resonance in a PEDOT-coated nanodisk metasurface. Opt. Mater. Express, 10, 1053(2020).

    [188] Z. Yan et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol., 16, 795(2021).

    [189] J. Eaves-Rathert et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett., 22, 1626(2022).

    [190] N.-N. Huang et al. Structural design of intelligent reversible two-way structural color films. Nano Lett., 23, 7389(2023).

    [191] C. Wu et al. Magnetically tunable one-dimensional plasmonic photonic crystals. Nano Lett., 23, 1981(2023).

    [192] L. He et al. Magnetochromatic thin-film microplates. Adv. Mater., 27, 86(2015).

    [193] S. Y. Lee et al. Magnetoresponsive photonic microspheres with structural color gradient. Adv. Mater., 29, 1605450(2017).

    [194] M. Wang, Y. Yin. Magnetically responsive nanostructures with tunable optical properties. J. Am. Chem. Soc., 138, 6315(2016).

    [195] J. W. Kim et al. Magnetic control of the plasmonic chirality in gold helicoids. Nano Lett., 22, 8181(2022).

    [196] X. Duan et al. Dynamic plasmonic colour display. Nat. Commun., 8, 14606(2017).

    [197] Y. Chen et al. Dynamic color displays using stepwise cavity resonators. Nano Lett., 17, 5555(2017).

    [198] H. Liu et al. Rewritable color nanoprints in antimony trisulfide films. Sci. Adv., 6, eabb7171(2020).

    [199] H. Liu et al. Switchable all-dielectric metasurfaces for full-color reflective display. Adv. Opt. Mater., 7, 1801639(2019).

    [200] D. Zheng et al. Metamaterial grating for colorimetric chemical sensing applications. Mater. Today Phys., 33, 101056(2023).

    [201] X. Gao et al. Polarization tunable transmitted full-color display enabling switchable bright and dark states. Opt. Express, 31, 3083(2023).

    [202] C.-H. Park et al. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating. Opt. Express, 21, 28783(2013).

    [203] J. Jang et al. Kerker-conditioned dynamic cryptographic nanoprints. Adv. Opt. Mater., 7, 1801070(2019).

    [204] J. Cai et al. Dual-color flexible metasurfaces with polarization-tunable plasmons in gold nanorod arrays. Adv. Opt. Mater., 9, 2001401(2021).

    [205] Y. Taii et al. Transparent color pixels using plastic MEMS technology for electronic papers. IEICE Electron. Express, 3, 97(2006).

    [206] M. L. Tseng et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett., 17, 6034(2017).

    [207] H. Kumagai et al. Stretchable and high-adhesive plasmonic metasheet using al subwavelength grating embedded in an elastomer nanosheet. Adv. Opt. Mater., 8, 1902074(2020).

    [208] X. Cai et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 3, 036003(2021).

    [209] O. L. Muskens et al. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light Sci. Appl., 5, e16173(2016).

    [210] D. Wegkamp, J. Stähler. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog. Surf. Sci., 90, 464(2015).

    [211] S. Wang et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 374, 1501(2021).

    [212] J. He et al. VO2 based dynamic tunable absorber and its application in switchable control and real-time color display in the visible region. Opt. Express, 28, 37590(2020).

    [213] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661(2021).

    [214] S. Abdollahramezani et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun., 13, 1696(2022).

    [215] P. Hosseini et al. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206(2014).

    [216] F. Ding et al. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [217] L. Lu et al. Reversible tuning of mie resonances in the visible spectrum. ACS Nano, 15, 19722(2021).

    [218] O. A. M. Abdelraouf et al. All-optical switching of structural color with a Fabry-Pérot cavity. Adv. Photonics Res., 4, 2300209(2023).

    [219] V. Raj Shrestha et al. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep., 5, 12450(2015).

    [220] M. Kim et al. Active color control in a metasurface by polarization rotation. Appl. Sci., 8, 982(2018).

    [221] D. Franklin et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun., 6, 7337(2015).

    [222] G. M. Akselrod et al. Plasmonic surface-scattering elements and metasurfaces for optical beam steering. U.S. Patent(2019).

    [223] G. M. Akselrod et al. Tunable liquid crystal metasurfaces. U.S. Patent(2020).

    [224] K. Li et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett., 21, 7183(2021).

    [225] T. Badloe et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl., 11, 118(2022).

    [226] M. F. Karim et al. A tunable bandstop filter via the capacitance change of micromachined switches. J. Micromech. Microeng., 16, 851(2006).

    [227] Z. Han et al. MEMS cantilever–controlled plasmonic colors for sustainable optical displays. Sci. Adv., 8, eabn0889(2022).

    [228] A. L. Holsteen et al. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365, 257(2019).

    [229] C. Zhang et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano, 14, 1418(2020).

    [230] X. Hou et al. Bioinspired multichannel colorful encryption through kirigami activating grating. Sci. Bull., 68, 276(2023).

    [231] C. Sun et al. Force-induced synergetic pigmentary and structural color change of liquid crystalline elastomer with nanoparticle-enhanced mechanosensitivity. Adv. Sci., 9, 2205325(2022).

    [232] T. L. Williams et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun., 10, 1004(2019).

    [233] K. Li et al. Facile full-color printing with a single transparent ink. Sci. Adv., 7, eabh1992(2021).

    [234] S. D. Rezaei et al. Tri-functional metasurface enhanced with a physically unclonable function. Mater. Today, 62, 51(2023).

    [235] W. Zhang et al. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. Mater. Horiz., 10, 2024(2023).

    [236] M. Dolatyari et al. Transparent display using a quasi-array of Si-SiO2 core-shell nanoparticles. Sci. Rep., 9, 2293(2019).

    [237] Q. Fu et al. Electrically responsive photonic crystals with bistable states for low-power electrophoretic color displays. Nat. Commun., 13, 7007(2022).

    [238] W.-J. Joo et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370, 459(2020).

    [239] G. Lippmann. La photographie integrale. Comptes-Rendus, 146, 446(1908).

    [240] J. You En Chan et al. Structural color prints combined with microlens arrays for sustainable autostereoscopic displays. Mater. Today. Proc., 70, 283(2022).

    [241] J. Y. E. Chan et al. High-resolution light field prints by nanoscale 3D printing. Nat. Commun., 12, 3728(2021).

    [242] H. Zhou et al. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves. Adv. Photonics, 5, 026005(2023).

    [243] X. Wang et al. Structural colors by synergistic birefringence and surface plasmon resonance. ACS Nano, 14, 16832(2020).

    [244] M. Esposito et al. Symmetry Breaking in oligomer surface plasmon lattice resonances. Nano Lett., 19, 1922(2019).

    [245] F. Zhang et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci., 7, 1903156(2020).

    [246] R. Feng et al. A modular design of continuously tunable full color plasmonic pixels with broken rotational symmetry. Adv. Funct. Mater., 32, 2108437(2022).

    [247] Y. Jung et al. Polarization selective color filter based on plasmonic nanograting embedded etalon structures. Nano Lett., 20, 6344(2020).

    [248] J. Cai et al. Dual-color flexible metasurfaces with polarization-tunable plasmons in gold nanorod arrays. Adv. Opt. Mater., 9, 2001401(2021).

    [249] Y. Ke et al. Engineering dynamic structural color pixels at microscales by inhomogeneous strain-induced localized topographic change. Nano Lett., 23, 5520(2023).

    [250] H. Wang et al. Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 18, 264(2023).

    [251] D. Hu et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy. ACS Nano, 12, 9233(2018).

    [252] S. So et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater., 35, 2208520(2023).

    [253] Y. Intaravanne et al. Color-selective three-dimensional polarization structures. Light Sci. Appl., 11, 302(2022).

    [254] Z.-L. Deng et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [255] Q. Wei et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett., 19, 8964(2019).

    [256] Q. Dai et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Adv. Funct. Mater., 30, 2003990(2020).

    [257] D. Kang et al. Multispectral imaging with a planar cavity-type metasurface for optical security. ACS Appl. Mater. Interfaces, 15, 29577(2023).

    [258] L. Li et al. Optical metasurfaces for multiplex high-performance grating-type structural colors. Opt. Lett., 48, 1686(2023).

    [259] K. T. P. Lim et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun., 10, 25(2019).

    [260] Y. Bao et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci. Appl., 8, 95(2019).

    [261] W. Yang et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [262] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [263] Y. Hu et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci. Appl., 8, 86(2019).

    [264] H. Sugimoto et al. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles. Adv. Opt. Mater., 8, 2000033(2020).

    [265] J. B. Kim et al. Direct writing of customized structural-color graphics with colloidal photonic inks. Sci. Adv., 7, eabj8780(2021).

    [266] K. Li et al. Facile full-color printing with a single transparent ink. Sci. Adv., 7, eabh1992(2021).

    [267] J. A. H. P. Sol et al. Direct ink writing of 4D structural colors. Adv. Funct. Mater., 32, 2201766(2022).

    [268] R. Bi et al. 3D-printed biomimetic structural colors. Small, 20, 2306646(2023).

    [269] A. F. Demirörs et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nat. Commun., 13, 4397(2022).

    [270] H. Zhang et al. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci., 8, 2102156(2021).

    [271] Y.-J. Quan et al. Stretchable biaxial and shear strain sensors using diffractive structural colors. ACS Nano, 14, 5392(2020).

    [272] F. Lütolf et al. Low-cost and large-area strain sensors based on plasmonic fano resonances. Adv. Opt. Mater., 4, 715(2016).

    [273] P. Cencillo-Abad et al. Reusable structural colored nanostructure for powerless temperature and humidity sensing. Adv. Opt. Mater., 11, 2300300(2023).

    [274] C. Jung et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv., 8, eabm8598(2022).

    [275] B. Ko et al. Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci., 10, 2204469(2023).

    [276] K. Kang et al. Self-powered gas sensor based on a photovoltaic cell and a colorimetric film with hierarchical micro/nanostructures. ACS Appl. Mater. Interfaces, 12, 39024(2020).

    [277] D. P. Langley et al. Optical chemical barcoding based on polarization controlled plasmonic nanopixels. Adv. Funct. Mater., 28, 1704842(2018).

    [278] C. Burel et al. Plasmonic elastic capsules as colorimetric reversible pH-microsensors. Small, 16, 1903897(2020).

    [279] J. Ho et al. Miniaturizing color-sensitive photodetectors via hybrid nanoantennas toward submicrometer dimensions. Sci. Adv., 8, eadd3868(2022).

    [280] D. Tua et al. Imaging-based intelligent spectrometer on a plasmonic rainbow chip. Nat. Commun., 14, 1902(2023).

    [281] M. Qin et al. A rainbow structural-color chip for multisaccharide recognition. Angew. Chem. Int. Ed., 55, 6911(2016).

    [282] L. Zheng et al. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron., 124-125, 143(2019).

    [283] C. Zhou et al. Optofluidic sensor for inline hemolysis detection on whole blood. ACS Sens., 3, 784(2018).

    [284] J. L. Montaño-Priede et al. Robust rules for optimal colorimetric sensing based on gold nanoparticle aggregation. ACS Sens., 8, 1827(2023).

    [285] F. Fu et al. Bioinspired living structural color hydrogels. Sci. Rob., 3, eaar8580(2018).

    [286] M. Alafeef et al. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc., 16, 3141(2021).

    [287] P. Moitra et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 14, 7617(2020).

    [288] J.-H. Choi et al. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett., 21, 693(2021).

    [289] E. Balaur et al. Colorimetric histology using plasmonically active microscope slides. Nature, 598, 65(2021).

    [290] T. M. Nguyen et al. Multiarray biosensor for diagnosing lung cancer based on gap plasmonic color films. ACS Sens., 8, 167(2023).

    [291] F. Yesilkoy et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390(2019).

    [292] Z. Zhao et al. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater., 29, 1704569(2017).

    [293] T. Chen, B. M. Reinhard. Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv. Mater., 28, 3522(2016).

    [294] L. Wang et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics, 3, 627(2016).

    [295] Z. Chen et al. Antibacterial structural color hydrogels. ACS Appl. Mater. Interfaces, 9, 38901(2017).

    [296] R. H. Siddique et al. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces. Light Sci. Appl., 6, e17015(2017).

    [297] R. M. Parker et al. The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv. Mater., 30, 1704477(2018).

    [298] T. S. Kustandi et al. Mimicking domino-like photonic nanostructures on butterfly wings. Small, 5, 574(2009).

    [299] A. F. Kaplan et al. Multilayer pattern transfer for plasmonic color filter applications. J. Vac. Sci. Technol. B, 28, C6O60(2010).

    [300] A. F. Kaplan et al. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett., 99, 143111(2011).

    [301] K.-T. Lee et al. Subwavelength nanocavity for flexible structural transmissive color generation with a wide viewing angle. Optica, 3, 1489(2016).

    [302] K.-T. Lee et al. Highly efficient colored perovskite solar cells integrated with ultrathin subwavelength plasmonic nanoresonators. Sci. Rep., 7, 10640(2017).

    [303] B. M. Gawlik et al. Structural coloration with hourglass-shaped vertical silicon nanopillar arrays. Opt. Express, 26, 30952(2018).

    [304] S. Checcucci et al. Multifunctional metasurfaces based on direct nanoimprint of titania sol–gel coatings. Adv. Opt. Mater., 7, 1801406(2019).

    [305] H. Zheng et al. Multichannel meta-imagers for accelerating machine vision. Nat. Nanotechnol.(2024).

    [306] S. H. Ahn, L. J. Guo. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater., 20, 2044(2008).

    [307] S. H. Ahn, L. J. Guo. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano, 3, 2304(2009).

    [308] P. Somers et al. The physics of 3D printing with light. Nat. Rev. Phys., 6, 99(2023).

    [309] Q. Geng et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).

    [310] T. Mori et al. Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat. Commun., 14, 5876(2023).

    [311] Y. Liu et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun., 10, 4340(2019).

    [312] H. Liu et al. High-order photonic cavity modes enabled 3D structural colors. ACS Nano, 16, 8244(2022).

    [313] J. Bae et al. Three-dimensional printing of structural color using a femtoliter meniscus. ACS Nano, 17, 13584(2023).

    [314] M. del Pozo et al. Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist. ACS Nano, 14, 9832(2020).

    [315] J. S. Llorens et al. Light-based 3D printing of complex-shaped photonic colloidal glasses. Adv. Mater., 35, 2302868(2023).

    [316] Y. Zhang et al. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat. Commun., 13, 7095(2022).

    [317] H. Wang et al. Optical fireworks based on multifocal three-dimensional color prints. ACS Nano, 15, 10185(2021).

    [318] A. Kumar et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun., 13, 5404(2022).

    [319] G. Giribaldi et al. Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios. Nat. Commun., 15, 304(2024).

    [320] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [321] J. Li et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv., 7, eabd7690(2021).

    [322] F. Zangeneh-Nejad et al. Analogue computing with metamaterials. Nat. Rev. Mater., 6, 207(2021).

    [323] J. Li et al. Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network. Adv. Photonics, 5, 016003(2023).

    [324] C.-Y. Shen et al. Multispectral quantitative phase imaging using a diffractive optical network. Adv. Intell. Syst., 5, 2300300(2023).

    Yingjie Li, Jingtian Hu, Yixuan Zeng, Qinghai Song, Cheng-Wei Qiu, Shumin Xiao. Recent progress on structural coloration[J]. Photonics Insights, 2024, 3(2): R03
    Download Citation