• Optical Communication Technology
  • Vol. 44, Issue 7, 1 (2020)
XU Zhengyuan1,2 and LIU Weijie1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2020.07.001 Cite this Article
    XU Zhengyuan, LIU Weijie. Transceiver techniques of interference mitigation for outdoor visible light communication[J]. Optical Communication Technology, 2020, 44(7): 1 Copy Citation Text show less
    References

    [1] HANZO L, HAAS H, IMRE S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless [J]. Proceedings of the IEEE, 2012, 100: 1853-1888.

         HANZO L, HAAS H, IMRE S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless [J]. Proceedings of the IEEE, 2012, 100: 1853-1888.

    [2] DAVID K, BERNDT H. 6G vision and requirements: is there any need for beyond 5G? [J]. IEEE Veh. Technol. Mag., 2018, 13(3): 72-80.

         DAVID K, BERNDT H. 6G vision and requirements: is there any need for beyond 5G? [J]. IEEE Veh. Technol. Mag., 2018, 13(3): 72-80.

    [3] ZHANG Z, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Veh. Technol. Mag., 2019, 14(3): 28-41.

         ZHANG Z, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Veh. Technol. Mag., 2019, 14(3): 28-41.

    [6] UYSAL M, GHASSEMLOOY Z, BEKKALI A, et al. Visible light communication for vehicular networking: performance study of a v2v system using a measured headlamp beam pattern model [J]. IEEE Veh. Technol. Mag., 2015, 10(4): 45-53.

         UYSAL M, GHASSEMLOOY Z, BEKKALI A, et al. Visible light communication for vehicular networking: performance study of a v2v system using a measured headlamp beam pattern model [J]. IEEE Veh. Technol. Mag., 2015, 10(4): 45-53.

    [8] DIMITRAKOPOULOS G, DEMESTICHAS P. Intelligent transportation systems [J]. IEEE Veh. Technol. Mag., 2010, 5(1): 77-84.

         DIMITRAKOPOULOS G, DEMESTICHAS P. Intelligent transportation systems [J]. IEEE Veh. Technol. Mag., 2010, 5(1): 77-84.

    [9] LIU W, XU Z. Some practical constraints and solutions for optical camera communication [J]. The Royal Society A Mathematical Physical and Engineering Sciences., 2020, 378(2169): 1-25.

         LIU W, XU Z. Some practical constraints and solutions for optical camera communication [J]. The Royal Society A Mathematical Physical and Engineering Sciences., 2020, 378(2169): 1-25.

    [10] NAGURA T, YAM T, KATAYAMA M. Tracking an LED array transmitter for visible light communications in the driving situation[C]//The

         7th International Symposium on Wireless Communication Systems, Sept. 19-22, 2010, York, UK. Piscataway: IEEE, 2010: 765-769.

         7th International Symposium on Wireless Communication Systems, Sept. 19-22, 2010, York, UK. Piscataway: IEEE, 2010: 765-769.

         NAGURA T, YAM T, KATAYAMA M. Tracking an LED array transmitter for visible light communications in the driving situation[C]//The

    [11] TAKAI I, ITO S, YASUTOMI K, et al. LED and CMOS image sensor based optical wireless communication system for automotive applications [J]. IEEE Photonics Journal, 2013, 5(5): 6801418-6801418.

         TAKAI I, ITO S, YASUTOMI K, et al. LED and CMOS image sensor based optical wireless communication system for automotive applications [J]. IEEE Photonics Journal, 2013, 5(5): 6801418-6801418.

    [12] TAKAI I, HARADA T, ANDOH M, et al. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver[J]. IEEE Photonics Journal, 2014, 6(5): 1-14.

         TAKAI I, HARADA T, ANDOH M, et al. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver[J]. IEEE Photonics Journal, 2014, 6(5): 1-14.

    [13] GOTO Y, TAKAI, YAMAZATO T, et al. A new automotive VLC system using optical communication image sensor[J]. IEEE Photonics Journal, 2016, 8(3): 1-17.

         GOTO Y, TAKAI, YAMAZATO T, et al. A new automotive VLC system using optical communication image sensor[J]. IEEE Photonics Journal, 2016, 8(3): 1-17.

    [14] LUAN H, JIN X, LIU W, et al. Demonstration of a real-time vehicular visible light communication system with timing recovery[C]//The 13th International Wireless Communications & Mobile Computing Conference, June 26-30, 2017, Valencia, Spain. Piscataway: IEEE, 2017: 472-477.

         LUAN H, JIN X, LIU W, et al. Demonstration of a real-time vehicular visible light communication system with timing recovery[C]//The 13th International Wireless Communications & Mobile Computing Conference, June 26-30, 2017, Valencia, Spain. Piscataway: IEEE, 2017: 472-477.

    [15] YANG R, JIN X, JIN M, et al. Experimental investigation of optical OFDMA for vehicular visible light communication[C]//The 43th European Conference on Optical Communication, Sept. 17-21, 2017, Gothenburg, Sweden. Washington: OSA, 2017. DOI: 10.1109/ECOC.2017.8346017.

         YANG R, JIN X, JIN M, et al. Experimental investigation of optical OFDMA for vehicular visible light communication[C]//The 43th European Conference on Optical Communication, Sept. 17-21, 2017, Gothenburg, Sweden. Washington: OSA, 2017. DOI: 10.1109/ECOC.2017.8346017.

    [16] MAO Y, JIN X, PAN W, et al. Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication [J]. Optics Express, 2019, 27(7): 9382-9393.

         MAO Y, JIN X, PAN W, et al. Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication [J]. Optics Express, 2019, 27(7): 9382-9393.

    [17] XU R, XU Z. LED-based vehicular visible light ranging[C]//IEEE International Conference on Communications, May 20-24, 2019, Shanghai, China. Piscataway: IEEE, 2019. DOI: 10.1109/ICC.2019.8761797.

         XU R, XU Z. LED-based vehicular visible light ranging[C]//IEEE International Conference on Communications, May 20-24, 2019, Shanghai, China. Piscataway: IEEE, 2019. DOI: 10.1109/ICC.2019.8761797.

    [18] LI S, HUANG B, XU Z. Experimental MIMO VLC systems using tricolor LED transmitters and receivers [C]//IEEE GLOBECOM Workshop on Optical Wireless Communications, Dec. 4-8, 2017, Singapore. Piscata-

         LI S, HUANG B, XU Z. Experimental MIMO VLC systems using tricolor LED transmitters and receivers [C]//IEEE GLOBECOM Workshop on Optical Wireless Communications, Dec. 4-8, 2017, Singapore. Piscata-

         way: IEEE, 2017. DOI: 10.1109/GLOCOMW.2017.8269140.

         way: IEEE, 2017. DOI: 10.1109/GLOCOMW.2017.8269140.

    [19] XUE W, LI S, XU Z. Sunlight enabled vehicle detection by LED street lights[C]//Asia Communications and Photonics Conference, Oct. 26-29, 2018, Hangzhou, China. Washington: OSA, 2018. DOI: 10.1109/ACP. 2018.8596156.

         XUE W, LI S, XU Z. Sunlight enabled vehicle detection by LED street lights[C]//Asia Communications and Photonics Conference, Oct. 26-29, 2018, Hangzhou, China. Washington: OSA, 2018. DOI: 10.1109/ACP. 2018.8596156.

    [20] LIU W, XU Z. APD nonlinearity and its impact on PAM-based visible light communication[J]. IEEE Communications Letters, 2020, 24(5):1057-1061.

         LIU W, XU Z. APD nonlinearity and its impact on PAM-based visible light communication[J]. IEEE Communications Letters, 2020, 24(5):1057-1061.

    [21] YUAN M, SHA X, LIANG X, et al. Coding performance for signal dependent channels in visible light communication system [C]//IEEE Global Conference on Signal and Information Processing, Dec. 14-16, 2015, Orlando, FL, USA. Piscataway: IEEE, 2015: 1037-1041.

         YUAN M, SHA X, LIANG X, et al. Coding performance for signal dependent channels in visible light communication system [C]//IEEE Global Conference on Signal and Information Processing, Dec. 14-16, 2015, Orlando, FL, USA. Piscataway: IEEE, 2015: 1037-1041.

    [22] WANG H, KIM S. Dimming control systems with polar codes in visible light communication [J]. IEEE Photon. Technol. Lett., 2017, 29(19): 1651-1654.

         WANG H, KIM S. Dimming control systems with polar codes in visible light communication [J]. IEEE Photon. Technol. Lett., 2017, 29(19): 1651-1654.

    [23] IEEE. Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. 35.110-Networking [S]. New York: IEEE, 2018: 1-405.

         IEEE. Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. 35.110-Networking [S]. New York: IEEE, 2018: 1-405.

    [24] nications, Dec. 9-13, 2018, Abu Dhabi, United Arab Emirate. Piscataway: IEEE, 2018. DOI: 10.1109/GLOCOMW.2018.8644291.

         WANG Y, WU N, Xu Z. Study of raptor codes for indoor mobile VLC channels [C]//IEEE GLOBECOM Workshop on Optical Wireless Commu-

         WANG Y, WU N, Xu Z. Study of raptor codes for indoor mobile VLC channels [C]//IEEE GLOBECOM Workshop on Optical Wireless Commu-

         nications, Dec. 9-13, 2018, Abu Dhabi, United Arab Emirate. Piscataway: IEEE, 2018. DOI: 10.1109/GLOCOMW.2018.8644291.

    [26] BENEDETTO S, POGGIOLINI P. Theory of polarization shift keying modulation [J] IEEE Trans. Commun., 1992, 40(4): 708-721.

         BENEDETTO S, POGGIOLINI P. Theory of polarization shift keying modulation [J] IEEE Trans. Commun., 1992, 40(4): 708-721.

    [27] cation Systems, November 11-15, 2013, Naha, Japan. Piscataway: IEEE, 2013: 749-752.

         cation Systems, November 11-15, 2013, Naha, Japan. Piscataway: IEEE, 2013: 749-752.

         CHUNG Y H, OH S. Efficient optical filtering for outdoor visible light communications in the presence of sunlight or artificial light [C]//2013 International Symposium on Intelligent Signal Processing and Communi-

         CHUNG Y H, OH S. Efficient optical filtering for outdoor visible light communications in the presence of sunlight or artificial light [C]//2013 International Symposium on Intelligent Signal Processing and Communi-

    [28] ISLIM M S, VIDEV S, SAFARI M, et al. The impact of solar irradiance on visible light communications [J]. Journal. Light. Technol., 2018, 36(12): 2376-2386.

         ISLIM M S, VIDEV S, SAFARI M, et al. The impact of solar irradiance on visible light communications [J]. Journal. Light. Technol., 2018, 36(12): 2376-2386.

    [29] TU C, LIU W, XU Z. Mitigation of strong background radiation with attenuation diversity for vehicular visible light communication [C]//The 11th International Conference on Wireless Communications and Signal Processing, Oct. 23-25, 2019, Xi’an, Shanxi, China. Piscataway: IEEE, 2019. DOI: 10.1109/WCSP.2019.8928070.

         TU C, LIU W, XU Z. Mitigation of strong background radiation with attenuation diversity for vehicular visible light communication [C]//The 11th International Conference on Wireless Communications and Signal Processing, Oct. 23-25, 2019, Xi’an, Shanxi, China. Piscataway: IEEE, 2019. DOI: 10.1109/WCSP.2019.8928070.

    [30] LIU W, JIN X, XU Z. Mitigation of strong solar radiation by attenuation diversity in vehicular visible light communication[C]//Asia Communications and Photonics Conference, Nov. 2-5, 2019, Chengdu, Sichuan, China. Washington: OSA, 2019: T2B.2-1- T2B.2-3.

         LIU W, JIN X, XU Z. Mitigation of strong solar radiation by attenuation diversity in vehicular visible light communication[C]//Asia Communications and Photonics Conference, Nov. 2-5, 2019, Chengdu, Sichuan, China. Washington: OSA, 2019: T2B.2-1- T2B.2-3.

    [31] LIU F, JIANG W, JIN X, XU Z. A simple and effective tracking scheme for visible light communication systems[C]//In International Conference on optical communications and Networks, Nov. 16-19, 2018, Zhuhai, China. San Francisco: SPIE, 2019: 110481H-1-110481H-5.

         LIU F, JIANG W, JIN X, XU Z. A simple and effective tracking scheme for visible light communication systems[C]//In International Conference on optical communications and Networks, Nov. 16-19, 2018, Zhuhai, China. San Francisco: SPIE, 2019: 110481H-1-110481H-5.

    [32] LIU F, JIN X, JIANG W, XU Z. Effective auto-alignment and tracking of transceivers for visible-light communication in data centres[C]//Proc. SPI, Broadband Access Communication Technologies XIII, Feb. 2-7, 2019, San Francisco, CA, USA. San Francisco: SPIE, 2019: 109450N-1-109450 N-8.

         LIU F, JIN X, JIANG W, XU Z. Effective auto-alignment and tracking of transceivers for visible-light communication in data centres[C]//Proc. SPI, Broadband Access Communication Technologies XIII, Feb. 2-7, 2019, San Francisco, CA, USA. San Francisco: SPIE, 2019: 109450N-1-109450 N-8.