• Chinese Journal of Lasers
  • Vol. 48, Issue 2, 0202004 (2021)
Mengyao Tian1, Pei Zuo1, Misheng Liang1, Chenyang Xu1..., Yongjiu Yuan1, Xueqiang Zhang1, Jianfeng Yan2,3 and Xin Li1,*|Show fewer author(s)
Author Affiliations
  • 1Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • 3Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0202004 Cite this Article Set citation alerts
    Mengyao Tian, Pei Zuo, Misheng Liang, Chenyang Xu, Yongjiu Yuan, Xueqiang Zhang, Jianfeng Yan, Xin Li. Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202004 Copy Citation Text show less
    References

    [1] Li Y, Li Z W, Chi C et al. Plasmonics of 2D nanomaterials: properties and applications[J]. Advanced Science, 4, 1600430(2017). http://onlinelibrary.wiley.com/doi/10.1002/advs.201600430

    [2] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004). http://www.researchgate.net/publication/8218170_Electric_Field_Effect_in_Atomically_Thin_Carbon_Films

    [3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).

    [4] Bhimanapati G R, Lin Z, Meunier V et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 9, 11509-11539(2015).

    [5] Radisavljevic B, Radenovic A, Brivio J et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).

    [6] Voiry D, Salehi M, Silva R et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Letters, 13, 6222-6227(2013).

    [7] Muehlethaler C, Considine C R, Menon V et al. Ultrahigh Raman enhancement on monolayer MoS2[J]. ACS Photonics, 3, 1164-1169(2016).

    [8] Wu W, Wang L, Li Y et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 514, 470-474(2014).

    [9] Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be?[J]. Nano Letters, 11, 3768-3773(2011). http://europepmc.org/abstract/MED/21790188

    [10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972).

    [11] Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 44, 1861-1885(2015).

    [12] Schneider J, Matsuoka M, Takeuchi M et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 114, 9919-9986(2014).

    [13] Liu L, Chen X. Titanium dioxide nanomaterials:self-structural modifications[J]. Chemical Reviews, 114, 9890-9918(2014).

    [14] Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional titanium dioxide nanomaterials[J]. Chemical Reviews, 114, 9487-9558(2014).

    [15] Ge M Z, Cao C Y, Huang J Y et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 4, 6772-6801(2016).

    [16] Crossland E J W, Noel N, Sivaram V et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance[J]. Nature, 495, 215-219(2013).

    [17] Yang L, Wei J T, Ma Z et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 9, 1789(2019).

    [18] Hong S, Lee H, Yeo J et al. Digital selective laser methods for nanomaterials:from synthesis to processing[J]. Nano Today, 11, 547-564(2016).

    [19] Yeon J H, Lee Y J, Yoo D E et al. High throughput ultralong (20 cm) nanowire fabrication using a wafer-scale nanograting template[J]. Nano Letters, 13, 3978-3984(2013).

    [20] Zhou Z R, Dong P, Li P L et al[J]. Research progress on the preparation methods of silicon nanowiresNonferrous Metallurgical Equipment, 2020, 1-3.

    [21] Han M, Liu S L, Zhang L Y et al. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction[J]. Acs Applied Materials & Interfaces, 4, 6654-6660(2012).

    [22] Xiong W, Zhou Y S, Hou W J et al. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Frontiers of Optoelectronics, 8, 351-378(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160106000015NkQnTp

    [23] Li B L. Study on the preparation of two- and zero-dimensional MoS2 nanomaterials and their applications in biosensors[D]. Chongqing: Southwest University(2015).

    [24] Wang D Z, Pan Z, Wu Z Z et al. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. Journal of Power Sources, 264, 229-234(2014).

    [25] Semaltianos N G. Nanoparticles by laser ablation[J]. Critical Reviews in Solid State and Materials Sciences, 35, 105-124(2010).

    [26] Gopalakrishnan D, Damien D, Li B et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications (Cambridge, England), 51, 6293-6296(2015).

    [27] Li W H, Shen Y L, Xiao X et al. Simple Te-thermal converting 2H to 1T@2H MoS2 homojunctions with enhanced supercapacitor performance[J]. ACS Applied Energy Materials, 2, 8337-8344(2019).

    [28] Gan X R. Lee L Y S, Wong K Y, et al. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies[J]. ACS Applied Energy Materials, 1, 4754-4765(2018).

    [29] Xu X L, Chen S L, Liu S et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation[J]. Journal of the American Chemical Society, 141, 2128-2134(2019).

    [30] Rezaei S, Li J, Herman P R. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining[J]. Optics Letters, 40, 2064-2067(2015).

    [31] Zhu J, Wang Z, Yu H et al. Argon plasma induced phase transition in monolayer MoS2[J]. Journal of the American Chemical Society, 139, 10216-10219(2017).

    [32] Cho S, Kim S, Kim J H et al. Phase patterning for ohmic homojunction contact inMo Te2[J]. Science, 349, 625-628(2015).

    [33] Li X, Jiang L, Wang C et al. Transient localized material properties changes by ultrafast laser-pulse manipulation of electron dynamics in micro/nano manufacturing[J]. MRS Proceedings, 1365, 3-8(2011).

    [34] Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 80, 3886-3888(2002).

    [35] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997).

    [36] Kautek W, Krüger J, Lenzner M et al. Laser ablation of dielectrics with pulse durations between 20fs and 3ps[J]. Applied Physics Letters, 69, 3146-3148(1996).

    [37] Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2[J]. Nano Letters, 15, 339-345(2015).

    [38] Pogna E A A, Marsili M, de Fazio D et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2[J]. ACS Nano, 10, 1182-1188(2016).

    [39] Hong X P, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014).

    [40] Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 38, 0601001(2011).

    [41] Xia B, Jiang L, Wang S M et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 40, 0201001(2013).

    [42] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).

    [43] Zhao Y Y, Zhang Y L, Zheng M L et al. Three-dimensional Luneburg lens at optical frequencies[J]. Laser & Photonics Reviews, 10, 665-672(2016).

    [44] Ma Y L, Jiang L, Hu J et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection[J]. ACS Applied Materials & Interfaces, 12, 17155-17166(2020).

    [45] Zuo P, Jiang L, Li X et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing[J]. ACS Applied Materials & Interfaces, 11, 39334-39341(2019).

    [46] Zuo P, Jiang L, Li X et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement[J]. Nanoscale, 11, 485-494(2019).

    [47] Li B, Jiang L, Li X et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production[J]. Advanced Functional Materials, 29, 1806229(2019).

    [48] Chen Y, Lai Z C, Zhang X et al. Phase engineering of nanomaterials[J]. Nature Reviews Chemistry, 4, 243-256(2020).

    [49] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).

    [50] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).

    [51] Patil P P, Phase D M, Kulkarni S A et al. Pulsed-laser-induced reactive quenching at liquid-solid interface:aqueous oxidation of iron[J]. Physical Review Letters, 58, 238-241(1987). http://www.ncbi.nlm.nih.gov/pubmed/10034878

    [52] Sakka T, Saito K, Ogata Y H. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission[J]. Journal of Applied Physics, 97, 014902(2005).

    [53] Barcikowski S, Compagnini G. Advanced nanoparticle generation and excitation by lasers in liquids[J]. Physical Chemistry Chemical Physics, 15, 3022-3026(2013).

    [54] Asahi T, Mafuné F, Rehbock C et al. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications[J]. Applied Surface Science, 348, 1-3(2015).

    [55] Eliezer S, Eliaz N, Grossman E et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 69, 144119(2004).

    [56] Wang H Q, Pyatenko A, Kawaguchi K et al. Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres[J]. Angewandte Chemie International Edition, 49, 6361-6364(2010).

    [57] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [58] Zhang D S, Liu J, Li P F et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 3, 512-533(2017).

    [59] Sylvestre J P, Kabashin A V, Sacher E et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Applied Physics A, 80, 753-758(2005).

    [60] Tan D Z, Lin G, Liu Y et al. Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation[J]. Journal of Nanoparticle Research, 13, 1183-1190(2011).

    [61] Li B, Jiang L, Li X et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water[J]. Scientific Reports, 7, 11182(2017).

    [62] Levis R J. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[J]. Science, 292, 709-713(2001).

    [63] Nakamura T, Takasaki K, Ito A et al. Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution[J]. Applied Surface Science, 255, 9630-9633(2009).

    [64] Herbani Y, Nakamura T, Sato S. Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane[J]. The Journal of Physical Chemistry C, 115, 21592-21598(2011).

    [65] Son Y, Yeo J, Moon H et al. Nanoscale electronics:digital fabrication by direct femtosecond laser processing of metal nanoparticles[J]. Advanced Materials, 23, 3176-3181(2011).

    [66] Zhao Y Y, Zheng M L, Dong X Z et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 108, 221104(2016).

    [67] Wang A D, Jiang L, Li X W et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 27, 6238-6243(2015).

    [68] Xiong W, Liu Y, Jiang L J et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Advanced Materials, 28, 2002-2009(2016).

    [69] Cui Y, Zhang H Y, Zhao Y A et al. Microscopic properties changes of Au film under action of femtosecond laser[J]. Chinese Journal of Lasers, 46, 0203001(2019).

    [70] Shi X, Li X, Jiang L et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 5, 17557(2015).

    [71] Liu Y Q, Mao J W, Chen Z D et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 45, 113-116(2019).

    [72] Zuo P, Jiang L, Li X et al. Shape-controllable gold nanoparticle-MoS2 hybrids prepared by tuning edge-active sites and surface structures of MoS2 via temporally shaped femtosecond pulses[J]. ACS Applied Materials & Interfaces, 9, 7447-7455(2017).

    [73] Li J, Yang X D, Liu Y et al. General synthesis of two-dimensional van der Waals heterostructure arrays[J]. Nature, 579, 368-374(2020).

    [74] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).

    [75] Ran P, Jiang L, Li X et al. Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO-TiO2-x photocatalysts under visible light[J]. Journal of Materials Chemistry A, 6, 16430-16438(2018).

    [76] Cai M, Fan P, Long J et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 9, 17856-17864(2017).

    [77] Jiang J, Ou-Yang L, Zhu L et al. Novel one-pot fabrication of lab-on-a-bubble@Ag substrate without coupling-agent for surface enhanced Raman scattering[J]. Scientific Reports, 4, 3942(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC3909904/

    [78] Ling X, Fang W J, Lee Y H et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2[J]. Nano Letters, 14, 3033-3040(2014).

    [79] Sun W F, Hong R J, Tao C X et al. Pulsed-laser-modified plasmon properties of metal nanofilms[J]. Chinese Journal of Lasers, 47, 0103001(2020).

    [80] Ran P, Jiang L, Li X et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 15, 1804899(2019).

    [81] Katz A, Redlich M, Rapoport L et al. Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications[J]. Tribology Letters, 21, 135-139(2006). http://link.springer.com/article/10.1007/s11249-006-9029-4

    [82] Wu H, Yang R, Song B et al. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water[J]. ACS Nano, 5, 1276-1281(2011).

    [83] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010). http://www.sciencedirect.com/science/article/pii/S1748013210000046

    [84] Xu C Y, Jiang L, Li X et al. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 67, 104260(2020).

    [85] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).

    [86] Ding S Y, Yi J, Li J F et al. Erratum: nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 16036(2016).

    [87] Gao W, Zheng M L, Jin F et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 57, 111421(2020).

    [88] Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 57, 111414(2020).

    [89] Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

    Mengyao Tian, Pei Zuo, Misheng Liang, Chenyang Xu, Yongjiu Yuan, Xueqiang Zhang, Jianfeng Yan, Xin Li. Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202004
    Download Citation