• Acta Geographica Sinica
  • Vol. 75, Issue 7, 1373 (2020)
Xinyue LIANG1、2、5、*, Mengzhen XU2, Liqun LYU2、3, Yifei CUI2, and Fengbao ZHANG1、4
Author Affiliations
  • 1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation , CAS and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • 2State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • 3Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • 4Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11821/dlxb202007004 Cite this Article
    Xinyue LIANG, Mengzhen XU, Liqun LYU, Yifei CUI, Fengbao ZHANG. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2020, 75(7): 1373 Copy Citation Text show less
    References

    [1] et alEffects of strong ground motion on the susceptibility of gully type debris flows[J]. Engineering Geology, 104, 241-253(2009).

    [2] Application of back-propagation networks in debris flow prediction[J]. Engineering Geology, 85, 270-280(2006).

    [3] Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China[J]. International Journal of Disaster Risk Reduction, 25, 60-71(2017).

    [4] et alAI-based identification of low-frequency debris flow catchments in the Bailong River basin, China[J]. Geomorphology, 107125(2020).

    [5] et alRegional risk assessment of debris flows in China: An HRU-based approach[J]. Geomorphology, 340, 84-102(2019).

    [6] et alDefining evacuation travel times and safety areas in a debris flow hazard scenario[J]. Science of the Total Environment, 712, 136452(2020). https://www.ncbi.nlm.nih.gov/pubmed/31931203

    [7] et alAssessing strategies to mitigate debris-flow risk in Abancay province, south-central Peruvian Andes[J]. Geomorphology, 342, 127-139(2019).

    [8] Characterization of acceptable risk for debris flows in China: Comparison in debris-flow prone areas and nonprone areas[J]. International Journal of Disaster Risk Reduction, 42, 101405(2020).

    [9] Acceptability of debris-flow disasters: Comparison of two case studies in China[J]. International Journal of Disaster Risk Reduction, 34, 45-54(2019).

    [10] A strategic approach to debris flow risk reduction on the road network[J]. Procedia Engineering, 143, 759-768(2016).

    [11] et alSimulation of interactions between debris flow and check dams on three-dimensional terrain[J]. Engineering Geology, 251, 48-62(2019).

    [12] et alMulti-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity[J]. Geomorphology, 345, 106844(2019).

    [13] [J], 32, 43-49(2017).

    [14] Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques[J]. The Egyptian Journal of Remote Sensing and Space Science, 17, 111-121(2014).

    [15] et alContinuous deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 32, 809-812(2004).

    [16] Geological environment and sisasters along railway line in the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 14, 31-37(2007).

    [17] [J], 25, 6-11(2014).

    [18] et al[J], 64, 2770-2782(2019).

    [19] et alGeomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan[J]. Geomorphology, 103, 227-250(2009).

    [20] et al[J], 41, 350-361(2011).

    [21] Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources[J]. Hydrological Processes, 19, 2329-2338(2005).

    [22] et al[J], 28, 102-106(2013).

    [23] et al[J], 28, 129-135(2014).

    [24] [J], 16, 137-143(1996).

    [25] Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques[J]. Environmental Earth Sciences, 68, 1967-1977(2013).

    [26] Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong[J]. Geomorphology, 42, 213-228(2002).

    [27] et alDetecting major terrain parameters relating to mass movements' occurrence using GIS, remote sensing and statistical correlations, case study Lebanon[J]. Remote Sensing of Environment, 99, 448-461(2005).

    [28] et alThe knowledge rules of debris flow event: A case study for investigation Chen Yu Lan River, Taiwan[J]. Engineering Geology, 98, 102-114(2008).

    [29] Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 82, 1079-1084(1971).

    [30] [J], 12, 41-47(2001).

    [31] RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India[J]. Advances in Space Research, 63, 1253-1269(2019).

    [32] et al[J], 69, 595-606(2014).

    [33] et al[J], 36, 166-172(2014).

    [34] et al[J], 52, 135-141(2007).

    [35] Simulating reservoir management under the threat of sedimentation: The case of Tarbela Dam on the River Indus[J]. Water Resources Management, 14, 191-208(2000).

    [36] Seismic landslide evolution and debris flow development: A case study in the Hongchun Catchment, Wenchuan area of China[J]. Engineering Geology for Society and Territory, 2, 445-449(2015).

    [37] et alRainfall-triggered debris flows following the Wenchuan earthquake[J]. Bulletin of Engineering Geology and the Environment, 68, 187-194(2009).

    [38] et alDisaster chains initiated by the Wenchuan earthquake[J]. Environmental Earth Sciences, 65, 975-985(2012).

    [39] Mass movements triggered by the Wenchuan earthquake and management strategies of quake lakes[J]. International Journal of River Basin Management, 7, 391-402(2009).

    [40] et al[J], 23, 317-323(2008).

    [41] [J], 28, 341-349(2010).

    [42] et alRelative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis[J]. Geomorphology, 257, 134-142(2016).

    [43] Stream-profile analysis and stream-gradient index[J]. Journal Research of United States Geological Survey, 1, 421-429(1973).

    [44] River profiles along the Himalayan arc as indicators of active tectonics[J]. Tectonophysics, 92, 335-367(1983).

    [45] Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey)[J]. Geomorphology, 94, 401-418(2008).

    [46] et alThe 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity[J]. Engineering Geology, 81, 65-83(2005).

    [47] The role of floodplain topography in deriving basin discharge using passive microwave remote sensing[J]. Water Resources Research, 55, 1707-1716(2019).

    [48] et al[J], 47, 1245-1252(2016).

    [49] et alGlacier melt runoff controls bedload transport in alpine catchments[J]. Earth and Planetary Science Letters, 520, 77-86(2019).

    [50] Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau: Changing characteristics with global warming[J]. Hydrological Processes, 26, 1509-1516(2012).

    [51] et al[J], 34, 1203-1209(2019).

    [52] et al[J], 36, 171-183(2018).

    [53] et al[J], 34, 1496-1505(2019).

    Xinyue LIANG, Mengzhen XU, Liqun LYU, Yifei CUI, Fengbao ZHANG. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2020, 75(7): 1373
    Download Citation