• INFRARED
  • Vol. 41, Issue 1, 39 (2020)
Patrizia KROK1, Ole PETERS1, Sami WITTMANN1、2, Datong WU2, * TAI Zhao-yang3, Hai-dong YANG3, Ling-tong FU1, and ** ZOU Pu
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2020.01.008 Cite this Article
    KROK Patrizia, PETERS Ole, WITTMANN Sami, WU Datong, TAI Zhao-yang *, YANG Hai-dong, FU Ling-tong, ZOU Pu **. Application on the Detection of Ceramic Coating and Low-Pressure Gas Based on THz-TDS[J]. INFRARED, 2020, 41(1): 39 Copy Citation Text show less
    References

    [1] Udem Th, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

    [2] Pernot G, Stoffel M, Savic I, et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers[J]. Nature Material, 2010, 9(6): 491-495.

    [3] Dietz R J B, Globisch B, Gerhard M, et al. 64 W pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions[J]. Applied Physics Letters, 2013, 103(6): 061103.

    [4] Hnsel W, Hoogland H, Giunta M, et al. All polarization maintaining fiber laser architecture for robust femtosecond pulse generation[J]. Applied Physics B, 2017, 123(1): 41.

    [5] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices[J]. Nano Letters, 2008, 8(11): 3766-3770.

    [6] Aghmiri N A, Huth F, Huber A J, et al. Hyperspectral time-domain terahertz nanoimaging[J]. Optics Express, 2019, 27(17): 24231-24242.

    [7] Krimi S, Klier J, Jonuscheit J, et al. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology[J]. Applied Physics Letters, 2016, 109(2): 021105.

    [8] Zou P, Peters O, Gleichweit C, et al. THz hyperspectral images analyzed by multivariate statistical methods[C]. Changsha: 9th International Symposium on Ultrafast Phenomena and Terahertz Waves, 2018.

    [9] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-on optical clocks metrology at the 17th decimal place[J]. Science, 2008, 319(5781): 1808-1812.

    [10] Adler F, Thorpe M J, Cossel K C, et al. Cavity-enhanced direct frequency comb spectroscopy: technology and applications[J]. Reviews in Analytical Chemistry, 2010, 3: 175-205.

    [11] Yasuia T, Kabetani Y, Saneyoshi E, et al. Tera hertz frequency comb by multifrequency-heterody ning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy[J]. Applied Physics Letters, 2006, 88(24): 241104.

    [12] Hsieh Y, Iyonaga Y, Sakaguch Y, et al. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs[J]. Scientific Reports, 2014, 4: 3816.

    [13] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

    [14] Markov V N, Krupnov A F. Measurements of the pressure shift of the 110-101 water line at 556 GHz produced by mixtures of gases[J]. Journal of Molecular Spectroscopy, 1995, 172(1): 211-214.

    KROK Patrizia, PETERS Ole, WITTMANN Sami, WU Datong, TAI Zhao-yang *, YANG Hai-dong, FU Ling-tong, ZOU Pu **. Application on the Detection of Ceramic Coating and Low-Pressure Gas Based on THz-TDS[J]. INFRARED, 2020, 41(1): 39
    Download Citation