• Photonics Research
  • Vol. 10, Issue 3, 703 (2022)
Kazuue Fujita*, Shohei Hayashi, Akio Ito, Tatsuo Dougakiuchi, Masahiro Hitaka, and Atsushi Nakanishi
Author Affiliations
  • Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita Ward, Hamamatsu 434-8601, Japan
  • show less
    DOI: 10.1364/PRJ.443819 Cite this Article Set citation alerts
    Kazuue Fujita, Shohei Hayashi, Akio Ito, Tatsuo Dougakiuchi, Masahiro Hitaka, Atsushi Nakanishi. Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range[J]. Photonics Research, 2022, 10(3): 703 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams. The 2017 terahertz science and technology roadmap. J. Phys. D, 50, 043001(2017).

    [3] T. Maekawa, H. Kanaya, S. Suzuki, M. Asada. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express, 9, 024101(2016).

    [4] K. Kasagi, S. Suzuki, M. Asada. Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz. J. Appl. Phys., 125, 151601(2019).

    [5] P. Chevalier, M. Schröter, C. R. Bolognesi, V. d’Alessandro, M. Alexandrova, J. Böck, R. Flückiger, S. Fregonese, B. Heinemann, C. Jungemann. Si/SiGe:C and InP/GaAsSb heterojunction bipolar transistors for THz applications. Proc. IEEE, 105, 1035-1050(2017).

    [6] M. Urteaga, Z. Griffith, M. Seo, J. Hacker, M. J. Rodwell. InP HBT technologies for THz integrated circuits. Proc. IEEE, 105, 1051-1067(2017).

    [7] Z. Hu, M. Kaynak, R. Han. High-power radiation at 1 THz in silicon: a fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid-State Circuits, 53, 1313-1327(2018).

    [8] R. Han, E. Afshari. A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid-State Circuits, 48, 3090-3104(2013).

    [9] U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, B. Heinemann. A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications. IEEE J. Solid-State Circuits, 49, 2938-2950(2014).

    [10] K. Sengupta, T. Nagatsuma, D. M. Mittleman. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron., 1, 622-635(2018).

    [11] S. Hayashi, K. Nawata, Y. Takida, Y. Tokizane, K. Kawase, H. Minamide. High-brightness continuously tunable narrowband subterahertz wave generation. IEEE Trans. Terahertz Sci. Technol., 6, 858-861(2016).

    [12] M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, S. W. Koch. Room temperature continuous wave milliwatt terahertz source. Opt. Express, 18, 27112-27117(2010).

    [13] A. Maestrini, I. Mehdi, J. V. Siles, R. Lin, C. Lee, G. Chattopadhyay, J. Pearson, P. Siegel. Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band. Proc. SPIE, 8496, 84960F(2012).

    [14] L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, J. Faist. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett., 115, 010601(2019).

    [15] A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski, Q. Hu. High-power portable terahertz laser systems. Nat. Photonics, 15, 16-20(2020).

    [16] C. Walther, G. Scalari, J. Faist, H. Beere, D. Ritchie. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett., 89, 231121(2006).

    [17] A. Pagies, G. Ducournau, J.-F. Lampin. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser. APL Photon., 1, 031302(2016).

    [18] P. Chevalier, A. Amirzhan, F. Wang, M. Piccardo, S. G. Johnson, F. Capasso, H. O. Everitt. Widely tunable compact terahertz gas lasers. Science, 366, 856-860(2019).

    [19] J.-F. Lampin, A. Pagies, G. Santarelli, J. Hesler, W. Hansel, R. Holzwarth, S. Barbieri. Quantum cascade laser-pumped terahertz molecular lasers: frequency noise and phase-locking using a 1560 nm frequency comb. Opt. Express, 28, 2091-2106(2020).

    [20] H. Ito, T. Yoshimatsu, H. Yamamoto, T. Ishibashi. Widely frequency tunable terahertz-wave emitter integrating uni-traveling-carrier photodiode and extended bowtie antenna. Appl. Phys. Express, 6, 064101(2013).

    [21] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [22] M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics, 1, 288-292(2007).

    [23] M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist. Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl. Phys. Lett., 92, 201101(2008).

    [24] Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi. Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett., 99, 131106(2011).

    [25] M. A. Belkin, F. Capasso. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr., 90, 118002(2015).

    [26] Q. Lu, M. Razeghi. Recent advances in room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation. Photonics, 3, 42(2016).

    [27] K. Fujita, S. Jung, Y. Jiang, J. H. Kim, A. Nakanishi, A. Ito, M. Hitaka, T. Edamura, M. A. Belkin. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 7, 1795-1817(2018).

    [28] K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, M. A. Belkin. Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett., 100, 251104(2012).

    [29] K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, M. A. Belkin. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat. Commun., 4, 2021(2013).

    [30] K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, M. A. Belkin. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Appl. Phys. Lett., 106, 251104(2015).

    [31] Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, M. A. Belkin. External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range. J. Opt., 16, 094002(2014).

    [32] Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi. Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation. Appl. Phys. Lett., 101, 251121(2012).

    [33] Q. Lu, D. Wu, S. Sengupta, S. Slivken, M. Razeghi. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci. Rep., 6, 23595(2016).

    [34] K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, T. Edamura. Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. Opt. Express, 24, 16357-16365(2016).

    [35] L. Consolino, M. Nafa, M. De Regis, F. Cappelli, S. Bartalini, A. Ito, M. Hitaka, T. Dougakiuchi, T. Edamura, P. De Natale, K. Fujita. Direct observation of terahertz frequency comb generation in difference-frequency quantum cascade lasers. Appl. Sci., 11, 1416(2021).

    [36] Q. Lu, F. Wang, D. Wu, S. Slivken, M. Razeghi. Room temperature terahertz semiconductor frequency comb. Nat. Commun., 10, 2403(2019).

    [37] A. Nakanishi, K. Fujita, K. Horita, H. Takahashi. Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources. Opt. Express, 27, 1884-1893(2019).

    [38] A. Nakanishi, S. Hayashi, H. Satozono, K. Fujita. Spectroscopic imaging with an ultra-broadband (1–4 THz) compact terahertz difference-frequency generation source. Electronics, 10, 336(2021).

    [39] K. Fujita, S. Hayashi, A. Ito, M. Hitaka, T. Dougakiuchi. Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics, 8, 2235-2241(2019).

    [40] S. Hayashi, A. Ito, M. Hitaka, K. Fujita. Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade laser. Appl. Phys. Express, 13, 112001(2020).

    [41] V. Pistore, H. Nong, P.-B. Vigneron, K. Garrasi, S. Houver, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, J. Mangeney. Millimeter wave photonics with terahertz semiconductor lasers. Nat. Commun., 12, 1427(2021).

    [42] K. Fujita, T. Edamura, S. Furuta, M. Yamanishi. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett., 96, 241107(2010).

    [43] S. Niu, J. Liu, F. Cheng, H. Wang, J. Zhang, N. Zhuo, S. Zhai, L. Wang, S. Liu, F. Liu. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photon. Res., 7, 1244-1248(2019).

    [44] A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. Opt. Lett., 32, 2840-2842(2007).

    [45] D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam. Integrated circuit antennas. Infrared and Millimeter Waves, 10, 1-90(1983).

    [46] S. Jung, J. H. Kim, Y. Jiang, K. Vijayraghavan, M. A. Belkin. Terahertz difference-frequency quantum cascade laser sources on silicon. Optica, 4, 38-43(2016).

    [47] T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, T. Edamura. Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range. Opt. Express, 22, 19930-19935(2014).

    [48] Hamamatsu Photonics. The world’s smallest wavelength-swept quantum cascade laser (QCL) mountable in small spaces as a light source designed for portable volcanic gas monitoring systems(2021).

    [49] K. Endo, M. Sekiya, J. Kim, K. Sato, T. Suzuki. Resonant tunneling diode integrated with metalens for high-directivity terahertz waves. Appl. Phys. Express, 14, 082001(2021).

    Kazuue Fujita, Shohei Hayashi, Akio Ito, Tatsuo Dougakiuchi, Masahiro Hitaka, Atsushi Nakanishi. Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range[J]. Photonics Research, 2022, 10(3): 703
    Download Citation