• Photonics Insights
  • Vol. 1, Issue 1, R01 (2022)
Qian Ma1、2、†, Che Liu1、2, Qiang Xiao1、2, Ze Gu1、2, Xinxin Gao1、2, Lianlin Li3, and Tie Jun Cui1、2、*
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China
  • 2Institute of Electromagnetic Space, Southeast University, Nanjing, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing, China
  • show less
    DOI: 10.3788/PI.2022.R01 Cite this Article Set citation alerts
    Qian Ma, Che Liu, Qiang Xiao, Ze Gu, Xinxin Gao, Lianlin Li, Tie Jun Cui. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01 Copy Citation Text show less
    References

    [1] J. B. Pendry et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773(1996).

    [2] J. B. Pendry et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075(1999).

    [3] V. G. Veselago. Electrodynamics of substances with simultaneously negative and values of ɛ and μ. Soviet Physics Uspekhi, 92, 517(1967).

    [4] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77(2001).

    [5] D. R. Smith, N. Kroll. Negative refractive index in left-handed materials. Phys. Rev. Lett., 85, 2933(2000).

    [6] C. G. Parazzoli et al. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 90, 107401(2003).

    [7] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar. Guided modes in negative-refractive-index waveguides. Phys. Rev. E, 67, 057602(2003).

    [8] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977(2006).

    [9] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780(2006).

    [10] R. Liu et al. Broadband ground-plane cloak. Science, 323, 366(2009).

    [11] F. Yang et al. DC electric invisibility cloak. Phys. Rev. Lett., 109, 053902(2012).

    [12] H. F. Ma, T. J. Cui. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun., 1, 124(2010).

    [13] F. M. Hui, T. J. Cui. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun., 1, 21(2010).

    [14] Q. Ma et al. Experiments on active cloaking and illusion for Laplace equation. Phys. Rev. Lett., 111, 173901(2013).

    [15] Q. Ma et al. Open active cloaking and illusion devices for the Laplace equation. J. Opt., 18, 044004(2016).

    [16] N. Fang et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534(2005).

    [17] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).

    [18] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett., 92, 117403(2004).

    [19] W. X. Jiang et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater., 25, 6963(2013).

    [20] Q. Ma et al. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity. J. Opt., 20, 045101(2018).

    [21] F. Falcone et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett., 93, 197401(2004).

    [22] N. F. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [23] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847(2004).

    [24] A. Alu. Mantle cloak: invisibility induced by a surface. Phys. Rev. B, 80, 245115(2009).

    [25] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [26] X. Ni et al. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310(2015).

    [27] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102(2019).

    [28] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [29] K. K. Katare et al. Realization of split beam antenna using transmission-type coding metasurface and planar lens. IEEE Trans. Antennas Propag., 67, 2074-2084(2019).

    [30] N. K. Grady et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [31] J. Hao et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett., 99(2007).

    [32] L. Chen et al. Optically transparent metasurface absorber based on reconfigurable and flexible indium tin oxide film. Micromachines, 11, 1032(2020).

    [33] J. Luo et al. 2-bit amplitude-modulated coding metasurfaces based on indium tin oxide films. J. Appl. Phys., 126, 113102(2019).

    [34] L. Bao et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl. Phys. Lett., 113, 063502(2018).

    [35] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896(2017).

    [36] M. M. Salary, H. Mosallaei. Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication. IEEE Trans. Antennas Propag., 68, 1628(2020).

    [37] M. Z. Chen et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl. Sci. Rev., 9, nwab134(2021).

    [38] X. Chen et al. Design and implementation of MIMO transmission based on dual-polarized reconfigurable intelligent surface. IEEE Wireless Commun. Lett., 10, 2155(2021).

    [39] J. Y. Dai et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans. Antennas Propag., 68, 1618(2020).

    [40] W. Tang et al. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J. Sel. Areas Commun., 38, 2683(2020).

    [41] K. H. Dou et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron. Adv., 3, 19000501(2020).

    [42] P. C. Huo et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791(2020).

    [43] M. F. Imani et al. Review of metasurface antennas for computational microwave imaging. IEEE Trans. Antennas Propag., 68, 1860(2020).

    [44] M. Zhou et al. Doubly curved reflectarray for dual-band multiple spot beam communication satellites. IEEE Trans. Antennas Propag., 68, 2087(2020).

    [45] M.-T. Zhang et al. Design of novel reconfigurable reflectarrays with single-bit phase resolution for ku-band satellite antenna applications. IEEE Trans. Antennas Propag., 64, 1634(2016).

    [46] A.-S. Kaddour et al. A foldable and reconfigurable monolithic reflectarray for space applications. IEEE Access, 8, 219355(2020).

    [47] H. X. Li et al. Ultrathin acoustic parity-time symmetric metasurface cloak. Research, 2019, 8345683(2019).

    [48] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383(2020).

    [49] X. G. Zhang et al. Smart doppler cloak operating in broad band and full polarizations. Adv. Mater., 33, e2007966(2021).

    [50] Z. Ullah et al. Dynamic absorption enhancement and equivalent resonant circuit modeling of tunable graphene-metal hybrid antenna. Sensors, 20, 3187(2020).

    [51] P. del Hougne, M. Davy, U. Kuhl. Optimal multiplexing of spatially encoded information across custom-tailored configurations of a metasurface-tunable chaotic cavity. Phys. Rev. Appl., 13, 041004(2020).

    [52] L. Lei et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Res., 7, 734(2019).

    [53] J. B. Reeves et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Lett., 18, 2802(2018).

    [54] P. Padmanabhan et al. A graphene-based magnetoplasmonic metasurface for actively tunable transmission and polarization rotation at terahertz frequencies. Appl. Phys. Lett., 116, 221107(2020).

    [55] X. Chen et al. Electrically tunable perfect terahertz absorber based on a graphene salisbury screen hybrid metasurface. Adv. Opt. Mater., 8, 1900660(2020).

    [56] J. Kappa et al. Electrically reconfigurable micromirror array for direct spatial light modulation ofterahertz waves over a bandwidth wider than 1 THz. Sci. Rep., 9, 2597(2019).

    [57] X. J. He et al. Active modulation and switching of toroidal resonance in micromachined reconfigurable terahertz metamaterials. Results Phys., 17, 103133(2020).

    [58] L. Chen, Y. Ruan, H. Y. Cui. Liquid metal metasurface for flexible beam-steering. Opt. Express, 27, 23282(2019).

    [59] L. Chen et al. Light-controllable metasurface for microwave wavefront manipulation. Opt. Express, 28, 18742(2020).

    [60] M. Manjappa et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. Nat. Commun., 9, 4056(2018).

    [61] Y. Ruan et al. Optical transparent and reconfigurable metasurface with autonomous energy supply. J. Phys. D, 53, 065301(2019).

    [62] H. Yang et al. A 1-bit 10 × 10 reconfigurable reflectarray antenna: design, optimization, and experiment. IEEE Trans. Antennas Propag., 64, 2246(2016).

    [63] H. Yang et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band. IEEE Trans. Antennas Propag., 65, 3024(2017).

    [64] Z. Tao et al. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Appl. Phys. Lett., 110, 121901(2017).

    [65] C. Della Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 13, 1115(2014).

    [66] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [67] Q. Ma et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv. Opt. Mater., 5, 1700548(2017).

    [68] T. J. Cui, S. Liu, L. Zhang. Information metamaterials and metasurfaces. J. Mater. Chem. C, 5, 3644(2017).

    [69] Q. Ma, T. J. Cui. Information Metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [70] T. J. Cui et al. Information metamaterial systems. iScience, 23, 101403(2020).

    [71] L. Zhang et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antennas Propag., 68, 2984(2020).

    [72] X. Wan et al. Beam forming of leaky waves at fixed frequency using binary programmable metasurface. IEEE Trans. Antennas Propag., 66, 4942(2018).

    [73] N. Zhang et al. Programmable coding metasurface for dual-band independent real-time beam control. IEEE J. Emerging Sel. Top. Circuits Syst., 10, 20(2020).

    [74] Y. Shuang et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications. IEEE J. Emerging Sel. Top. Circuits Syst., 10, 29(2020).

    [75] J. W. You et al. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [76] G. D. Bai et al. Spin-symmetry breaking through metasurface geometric phases. Phys. Rev. Appl., 12, 044042(2019).

    [77] Q. Xiao et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [78] L. Chen et al. Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl., 11, 040551(2019).

    [79] L. Chen et al. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Res., 9, 116(2021).

    [80] Q. Ma et al. Editing arbitrarily linear polarizations using programmable metasurface. Phys. Rev. Appl., 13, 021003(2020).

    [81] L. Zhang et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218(2021).

    [82] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [83] Q. Ma et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater., 7, 1901285(2019).

    [84] L. Zhang et al. Breaking reciprocity with space-time-coding digital metasurfaces. Adv. Mater., 31, 1904069(2019).

    [85] Q. Ma et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl., 8, 98(2019).

    [86] Q. Ma et al. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 9, 3271-3278(2020).

    [87] L. Li et al. Intelligent metasurface imager and recognizer. Light Sci. Appl., 8, 97(2019).

    [88] C. Liu et al. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photonics Res., 9, B159(2021).

    [89] L. Li et al. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [90] H. Zhao et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals. Nat. Commun., 11, 3926(2020).

    [91] Q. R. Hong et al. Programmable amplitude-coding metasurface with multifrequency modulations. Adv. Intell. Syst. Comput., 3, 2000260(2021).

    [92] H. Wu et al. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci., 4, 1700098(2017).

    [93] J. Liu et al. Terahertz information metamaterials and metasurfaces. J. Radars, 7, 46-55(2018).

    [94] S. Liu et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl., 5, e16076(2016).

    [95] S. Liu et al. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Appl. Mater. Interfaces, 9, 21503(2017).

    [96] T.-J. Cui, S. Liu, L.-L. Li. Information entropy of coding metasurface. Light Sci. Appl., 5, e16172(2016).

    [97] S. Liu et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz. Adv. Sci., 3, 1600156(2016).

    [98] R. Y. Wu et al. Addition theorem for digital coding metamaterials. Adv. Opt. Mater., 6, 1701236(2018).

    [99] T. J. Cui et al. Direct transmission of digital message via programmable coding metasurface. Research, 2019, 2584509(2019).

    [100] J. Y. Dai et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv. Mater. Technol., 4, 1900044(2019).

    [101] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [102] H. Wu et al. Information theory of metasurfaces. Natl. Sci. Rev., 7, 561(2020).

    [103] H. Wu et al. Harmonic information transitions of spatiotemporal metasurfaces. Light Sci. Appl., 9, 198(2020).

    [104] J. Y. Dai et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl., 7, 90(2018).

    [105] J. Zhao et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 6, 231(2019).

    [106] J. Y. Dai et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface. Laser Photonics Rev., 14, 1900133(2020).

    [107] W. Tang et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun., 16, 46(2019).

    [108] J. Y. Dai et al. Wireless communication based on information metasurfaces. IEEE Trans. Microw. Theory Tech., 69, 1493(2021).

    [109] J. Y. Dai et al. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Appl. Phys. Rev., 7, 041408(2020).

    [110] A. Zappone et al. Overhead-aware design of reconfigurable intelligent surfaces in smart radio environments. IEEE Trans. Wireless Commun., 20, 126(2021).

    [111] Z. Yang et al. Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces. IEEE Trans. Wireless Commun., 21, 665(2021).

    [112] W. Tang et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans. Wireless Commun., 20, 421(2021).

    [113] C. Huang et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun., 18, 4157(2019).

    [114] M. Di Renzo et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun., 38, 2450(2020).

    [115] Y. Liu et al. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun. Surv. Tutor., 23, 1546(2021).

    [116] D. Silver et al. Mastering the game of Go without human knowledge. Nature, 550, 354(2017).

    [117] Y. Lecun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).

    [118] G. Hinton et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag., 29, 82(2012).

    [119] G. Pironkov, S. U. N. Wood, S. Dupont. Hybrid-task learning for robust automatic speech recognition. Comput. Speech Lang., 64, 101103(2020).

    [120] A. Graves, A. R. Mohamed, G. Hinton. International Conference on Acoustics Speech and Signal Processing ICASSP. IEEE International Conference on Acoustics, Speech and Signal Processing, 6645(2013).

    [121] K. Lu. Intelligent recognition system for high precision image significant features in large data background. Advances in Intelligent Systems and Computing, 1056(2020).

    [122] T. Tong et al. MBVCNN: joint convolutional neural networks method for image recognition. AIP Conf. Proc., 1839, 020091(2017).

    [123] H. Sun et al. MBVCNN: joint convolutional neural networks method for image recognition. 7th International Conference on System of Systems Engineering, 24(2012).

    [124] K. Cho et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation(2014).

    [125] C. Escolano, M. R. Costa-Jussa, J. A. R. Fonollosa. From bilingual to multilingual neural-based machine translation by incremental training. 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 236(2019).

    [126] S. Kwon, B. H. Go, J. H. Lee. A text-based visual context modulation neural model for multimodal machine translation. Pattern Recognit. Lett., 136, 212(2020).

    [127] I. J. Goodfellow et al. Generative adversarial nets. Advances in Neural Information Processing Systems(2014).

    [128] C. Ledig et al. Photo-realistic single Image super-resolution using a generative adversarial network. 30th IEEE Conference on Computer Vision and Pattern Recognition, 105(2017).

    [129] Y. Choi et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8789(2018).

    [130] J. Xiao, X. Bi. Multi-scale attention generative adversarial networks for video frame interpolation. IEEE Access, 8, 94842(2020).

    [131] C. He et al. Integral reinforcement learning-based multi-robot minimum time-energy path planning subject to collision avoidance and unknown environmental disturbances. IEEE Control Syst. Lett., 5, 983(2021).

    [132] B. Sangiovanni et al. Self-configuring robot path planning with obstacle avoidance via deep reinforcement learning. IEEE Control Syst. Lett., 5, 397(2021).

    [133] J. Yoo et al. Hybrid reinforcement learning control for a micro quadrotor flight. IEEE Control Syst. Lett., 5, 505(2021).

    [134] Q. Zhang et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces. Sci. Rep., 7, 3588(2017).

    [135] T. Qiu et al. Deep learning: a rapid and efficient route to automatic metasurface design. Adv. Sci., 6, 1900128(2019).

    [136] F. Ghorbani et al. A deep learning approach for inverse design of the metasurface for dual-polarized waves. Appl. Phys. A, 127, 869(2021).

    [137] S. Inampudi, H. Mosallaei. Neural network based design of metagratings. Appl. Phys. Lett., 112, 241102(2018).

    [138] Y. T. Luo et al. Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures. Research, 2020, 8757403(2020).

    [139] M. Raissi, P. Perdikaris, G. E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, 686(2019).

    [140] Z. H. Wu et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32, 4(2021).

    [141] A. Sanchez-Gonzalez et al. Learning to simulate complex physics with graph networks. 37th International Conference on Machine Learning, 8428(2020).

    [142] H. Momose, T. Kaneko, T. Asai. Systems and circuits for AI chips and their trends. Jpn. J. Appl. Phys., 59, 050502(2020).

    [143] A. Isozaki et al. AI on a chip. Lab Chip, 20, 3074(2020).

    [144] W. Q. Zhang et al. Neuro-inspired computing chips. Nat. Electron., 3, 371(2020).

    [145] Q. Zhang et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [146] E. Goi et al. Perspective on photonic memristive neuromorphic computing. PhotoniX, 1, 3(2020).

    [147] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [148] Y. Luo et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl., 8, 112(2019).

    [149] D. Mengu et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top Quantum. Electron., 26, 3700114(2020).

    [150] D. Mengu et al. Misalignment resilient diffractive optical networks. Nanophotonics, 9, 4207(2020).

    [151] M. S. S. Rahman et al. Ensemble learning of diffractive optical networks. Light Sci. Appl., 10, 14(2021).

    [152] T. Yan et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 123, 023901(2019).

    [153] T. Zhou et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res., 8, 940(2020).

    [154] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367(2021).

    [155] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113(2022).

    [156] L. G. Wright et al. Deep physical neural networks trained with backpropagation. Nature, 601, 549(2022).

    [157] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [158] A. Nemati et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [159] T. J. Cui. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves. J. Opt., 19, 084004(2017).

    [160] S. Liu, T. J. Cui. Concepts, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater., 5, 1700624(2017).

    [161] Y. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622(2019).

    [162] S. Kruk et al. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol., 14, 126(2019).

    [163] Y. Zeng et al. Electrically pumped topological laser with valley edge modes. Nature, 578, 246(2020).

    [164] X. Wu et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun., 8, 1304(2017).

    [165] X. P. Shen, T. J. Cui. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev., 8, 137(2014).

    [166] X. Cheng et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542(2016).

    [167] J. P. Xia et al. Programmable coding acoustic topological insulator. Adv. Mater., 30, e1805002(2018).

    [168] Q. Zhang et al. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mech. Lett., 28, 76-80(2019).

    [169] H. Zhao et al. Non-Hermitian topological light steering. Science, 365, 1163(2019).

    [170] T. Cao et al. Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci. Bull., 64, 814(2019).

    [171] A. Darabi, M. Collet, M. J. Leamy. Experimental realization of a reconfigurable electroacoustic topological insulator. Proc. Natl Acad. Sci. USA, 117, 16138(2020).

    [172] C. G. Parazzoli et al. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 90, 107401(2003).

    [173] Q. Cheng, W. X. Jiang, T. J. Cui. Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys. Rev. Lett., 108, 213903(2012).

    [174] X. Chen et al. Macroscopic invisibility cloaking of visible light. Nat. Commun., 2, 176(2011).

    [175] Q. He, S. L. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [176] Y. Zhou et al. Reconfigurable metasurface for multiple functions: magnitude, polarization and phase modulation. Opt. Express, 26, 29451(2018).

    [177] S. Bang et al. Recent advances in tunable and reconfigurable metamaterials. Micromachines, 9, 560(2018).

    [178] S. Jafar-Zanjani, S. Inampudi, H. Mosallaei. Adaptive genetic algorithm for optical metasurfaces design. Sci. Rep., 8, 11040(2018).

    [179] J. Zhang et al. Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Appl. Mater. Interfaces, 13, 7792-7800(2021).

    [180] Q. Zhang et al. Machine-learning designs of anisotropic digital coding metasurfaces. Adv. Theor. Simul., 2, 1800132(2019).

    [181] C. C. Nadell et al. Deep learning for accelerated all-dielectric metasurface design. Opt. Express, 27, 27523(2019).

    [182] T. S. Qiu et al. Deep learning: a rapid and efficient route to automatic metasurface design. Adv. Sci., 6, 1900128(2019).

    [183] Y. Luo et al. Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures. Research, 2020, 8757403(2020).

    [184] S. S. An et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196(2019).

    [185] W. Ma, F. Cheng, Y. M. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326(2018).

    [186] A. Khan et al. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev., 53, 5455(2020).

    [187] B. S. Prakash et al. A survey on recurrent neural network architectures for sequential learning. Advances in Intelligent Systems and Computing, 57(2019).

    [188] Q. Zhang et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces. Sci. Rep., 7, 3588(2017).

    [189] J. Kennedy et al. A discrete binary version of the particle swarm algorithm. Smc ‘97 Conference Proceedings, 4104(1997).

    [190] T. He et al. Perfect anomalous reflectors at optical frequencies. Sci. Adv., 8, eabk3381(2022).

    [191] N. Mohammadi Estakhri, A. Alù. Wave-front transformation with gradient metasurfaces. Phys. Rev. X, 6, 041008(2016).

    [192] L. P. Kaelbling, M. L. Littman, A. W. Moore. Reinforcement learning: a survey. J. Artif. Intell. Res., 4, 237(1996).

    [193] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518, 529(2015).

    [194] I. Sajedian, H. Lee, J. Rho. Double-deep Q-learning to increase the efficiency of metasurface holograms. Sci. Rep., 9, 10899(2019).

    [195] I. Malkiel et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 60(2018).

    [196] I. Sajedian, J. Kim, J. Rho. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst Nanoeng, 5, 27(2019).

    [197] Z. C. Liu et al. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570(2018).

    [198] S. S. An et al. Multifunctional metasurface design with a generative adversarial network. Adv. Opt. Mater., 9, 2001433(2021).

    [199] W. Ma et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [200] T. Young et al. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag., 13, 55(2018).

    [201] J. M. Johnson, Y. Rahmat-Samii. Genetic algorithm optimization for aerospace electromagnetic design and analysis. IEEE Aerospace Applications Conference, 87(1996).

    [202] J. Robinson, Y. Rahmat-Samii. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag., 52, 397(2004).

    [203] J. Wu et al. Anisotropic metasurface holography in 3D space with high resolution and efficiency. IEEE Trans. Antennas Propag., 69, 302(2020).

    [204] L. Shi et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234(2021).

    [205] T. Shan et al. Coding programmable metasurfaces based on deep learning techniques. IEEE J. Emerg. Sel. Topics Power Electron, 10, 114(2020).

    [206] H. C. Zhang et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev., 9, 83(2015).

    [207] D. Wang et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 67(2021).

    [208] Z. Wang et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).

    [209] S. Li et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 9, 3473(2020).

    [210] Y. Meng et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl., 10, 235(2021).

    [211] E. Khoram et al. Nanophotonic media for artificial neural inference. Photonics Res., 7, 823(2019).

    Qian Ma, Che Liu, Qiang Xiao, Ze Gu, Xinxin Gao, Lianlin Li, Tie Jun Cui. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01
    Download Citation