• Photonics Research
  • Vol. 12, Issue 6, 1322 (2024)
Fan Ye, Yue Qin, Chenfei Cui, Xiankai Sun, and Hon Ki Tsang*
Author Affiliations
  • Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.521058 Cite this Article Set citation alerts
    Fan Ye, Yue Qin, Chenfei Cui, Xiankai Sun, Hon Ki Tsang, "Integrated bound-state-in-the-continuum photon-pair source," Photonics Res. 12, 1322 (2024) Copy Citation Text show less
    References

    [1] W. Luo, L. Cao, Y. Shi. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl., 12, 175(2023).

    [2] Y. Chi, J. Huang, Z. Zhang. A programmable qudit-based quantum processor. Nat. Commun., 13, 1166(2022).

    [3] X. Guo, C. L. Zou, C. Schuck. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl., 6, e16249(2017).

    [4] R. R. Kumar, M. Raevskaia, V. Pogoretskii. Entangled photon pair generation from an InP membrane micro-ring resonator. Appl. Phys. Lett., 114, 021104(2019).

    [5] T. J. Steiner, J. E. Castro, L. Chang. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).

    [6] H. Jin, F. M. Liu, P. Xu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [7] E. Lomonte, M. A. Wolff, F. Beutel. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun., 12, 6847(2021).

    [8] D. Bouwmeester, J.-W. Pan, K. Mattle. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [9] W. Tittel, J. Brendel, H. Zbinden. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett., 81, 3563-3566(1998).

    [10] P. Walther, K. J. Resch, T. Rudolph. Experimental one-way quantum computing. Nature, 434, 169-176(2005).

    [11] C. P. Dietrich, A. Fiore, M. G. Thompson. GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits. Laser Photon. Rev., 10, 870-894(2016).

    [12] F. Baboux, G. Moody, S. Ducci. Nonlinear integrated quantum photonics with AlGaAs. Optica, 10, 917-931(2023).

    [13] N. Li, C. P. Ho, S. Zhu. Aluminium nitride integrated photonics: a review. Nanophotonics, 10, 2347-2387(2021).

    [14] J. Zhao, C. Ma, M. Rusing. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [15] G.-T. Xue, Y.-F. Niu, X. Liu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [16] U. A. Javid, J. Ling, J. Staffa. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127, 183601(2021).

    [17] Z. Ma, J. Y. Chen, Z. Li. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).

    [18] J. Lu, M. Li, C.-L. Zou. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654-1659(2020).

    [19] K. Luke, P. Kharel, C. Reimer. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [20] F. Eltes, D. Caimi, F. Fallegger. Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics. ACS Photon., 3, 1698-1703(2016).

    [21] Q. Guo, X. Z. Qi, L. Zhang. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature, 613, 53-59(2023).

    [22] A. Rao, A. Patil, J. Chiles. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [23] S. Li, L. Cai, Y. Wang. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express, 23, 24212-24219(2015).

    [24] A. Rao, M. Malinowski, A. Honardoost. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941-29947(2016).

    [25] L. Chang, Y. Li, N. Volet. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [26] C.-L. Zou, J.-M. Cui, F.-W. Sun. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [27] Z. Yu, X. Xi, J. Ma. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [28] G. Y. Chen, Z. X. Li, Y. H. Chen. Highly efficient polarization-entangled photon-pair generation in lithium niobate waveguides based on bound states in continuum. Opt. Express, 29, 12110-12123(2021).

    [29] Y. Yu, Z. Yu, L. Wang. Ultralow‐loss etchless lithium niobate integrated photonics at near‐visible wavelengths. Adv. Opt. Mater., 9, 2100060(2021).

    [30] Y. Wang, Z. Yu, Z. Zhang. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photon., 7, 2643-2649(2020).

    [31] J. Zhang, J. Ma, M. Parry. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv., 8, eabq4240(2022).

    [32] T. Santiago-Cruz, S. D. Gennaro, O. Mitrofanov. Resonant metasurfaces for generating complex quantum states. Science, 377, 991-995(2022).

    [33] Z. E. Chemicals. ZEP520A Technical report(2003).

    [34] F. Ye, Y. Yu, X. Xi. Second‐harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photon. Rev., 16, 2100429(2022).

    [35] R. Luo, Y. He, H. Liang. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [36] R. Luo, Y. He, H. Liang. Semi‐nonlinear nanophotonic waveguides for highly efficient second‐harmonic generation. Laser Photon. Rev., 13, 1800288(2019).

    [37] H. Du, X. Zhang, L. Wang. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide. Opt. Express, 31, 9713-9726(2023).

    [38] C. Wang, C. Langrock, A. Marandi. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [39] M. Fortsch, J. U. Furst, C. Wittmann. A versatile source of single photons for quantum information processing. Nat. Commun., 4, 1818(2013).

    [40] J. F. Clauser, M. A. Horne. Experimental consequences of objective local theories. Phys. Rev. D, 10, 526-535(1974).

    [41] J. Y. Hu, B. Yu, M. Y. Jing. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 5, e16144(2016).

    [42] S. Signorini, L. Pavesi. On-chip heralded single photon sources. AVS Quantum Sci., 2, 041701(2020).

    [43] J. Schneeloch, S. H. Knarr, D. F. Bogorin. Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion. J. Opt., 21, 043501(2019).

    [44] L. G. Helt, M. Liscidini, J. E. Sipe. How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices. J. Opt. Soc. Am. B, 29, 2199-2212(2012).