[1] Niffenegger R J, Stuart J, Sorace-Agaskar C, et al. Integrated multi-wavelength control of an ion qubit[J]. Nature, 2020, 586: 538-542.
[2] Shi L, Li B, Kim C, et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 2021, 591: 234-239.
[3] Ikuta R, Kusaka Y, Kitano T, et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion[J]. Nature Communications, 2011, 2: 537.
[4] An Jinyoung, Pham Quan Ngoc, Chung Wan-Young. Single cell three-channel wavelength division multiplexing in visible light communication[J]. Opt. Express, 2017, 25: 25477-25485.
[5] Hernndez-Neuta I, Neumann F, Brightmeyer J, et al. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care[J]. J. Intern. Med., 2019, 285: 19-39.
[6] Li Lan, Lin Hongtao, Qiao Shutao, et al. Monolithically integrated stretchable photonics[J]. Light Science & Applications, 2018, 7(2): 17138.
[7] Li Lan, Lin Hongtao, Qiao Shutao, et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 2014, 8(8): 643-649.
[8] Wang Cong, Wang Ding, Kozhevnikov V, et al. A flexible topo-optical sensing technology with ultra-high contrast[J]. Nature Communications, 2020, 11: 1448.
[9] Li Lan, Lin Hongtao, Huang Yizhong, et al. High-performance flexible waveguide-integrated photodetectors[J]. Optica, 2018, 5(1): 44-51.
[10] Katsuyama T, Nakao A, Ogawa K, et al. Extremely small red-green-blue beam combiners for compact projection-type displays[J]. Proc. of SPIE, 2014, 9272: 927203.
[11] Nakao A, Morimoto R, Kato Y, et al. Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays[J]. Opt. Commun., 2014, 330: 45-48.
[12] Sakamoto J, Goh T, Katayose S, et al. Compact and low-loss RGB coupler using mode-conversion waveguides[J]. Opt. Commun., 2018, 420: 46-51.
[13] Cheben P, Halir R, Schmid J H, et al. Subwavelength integrated photonics[J]. Nature, 2018, 560: 565-572.
[14] Zhang Weifeng, Yao Jianping. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing[J]. Nature Communications, 2018, 9: 1396.
[16] Tal Weiss, Yonatan Sivan. Stopping light using a transient Bragg grating[J]. Phys. Rev. A, 2020, 101: 033828.
[19] Kung Y C, Hosseini N, Dumcenco D, et al. Air and water-stable n-type doping and encapsulation of flexible MoS2 devices with SU8[J]. Adv. Electronic Materials, 2018, 5(1): 1800492.
[20] Jin Lin, Fu Xin, Shi Yaocheng, et al. Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides[J]. Opt. Lett., 2013, 38(12): 2134-2136.
[21] Matarèse B F E, Feyen P L C, Falco A, et al. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes[J]. Scientific Reports, 2018, 8(1): 5560.
[22] Chen Zhi, Wang Guande, Wang Xiong. Physical mechanism and response characteristics of unsaturated optical stopping-based amorphous arsenic sulfide thin-film waveguides[J]. IEEE Photonics J., 2019, 11(1): 6100910.
[23] Chen Zhi, Wang Guande, Wang Xiong, et al. Moving toward optoelectronic logic circuits for visible light: a chalcogenide glass single-mode single-polarization optical waveguide switch[J]. Appl. Optics, 2017, 56(5): 1405-1412.