• Photonics Research
  • Vol. 7, Issue 10, 1142 (2019)
Qian Zhao, Zhong-Jian Yang*, and Jun He
Author Affiliations
  • Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
  • show less
    DOI: 10.1364/PRJ.7.001142 Cite this Article Set citation alerts
    Qian Zhao, Zhong-Jian Yang, Jun He, "Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures," Photonics Res. 7, 1142 (2019) Copy Citation Text show less
    References

    [1] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [2] M. Decker, I. Staude. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt., 18, 103001(2016).

    [3] Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, H.-Q. Lin. Dielectric nanoresonators for light manipulation. Phys. Rep., 701, 1-50(2017).

    [4] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [5] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [6] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [7] X. Zhu, W. Yan, U. Levy, N. A. Mortensen, A. Kristensen. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 3, e1602487(2017).

    [8] W. Liu. Generalized magnetic mirrors. Phys. Rev. Lett., 119, 123902(2017).

    [9] R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, A. I. Kuznetsov. Magnetic and electric hotspots with silicon nanodimers. Nano Lett., 15, 2137-2142(2015).

    [10] M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, S. A. Maier. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun., 6, 7915(2015).

    [11] Y. Yang, V. A. Zenin, S. I. Bozhevolnyi. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics, 5, 1960-1966(2018).

    [12] U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, B. N. Chichkov. Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photonics, 2, 913-920(2015).

    [13] J. van de Groep, T. Coenen, S. A. Mann, A. Polman. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica, 3, 93-99(2016).

    [14] Y. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [15] J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang. Directional Fano resonance in a silicon nano sphere dimer. ACS Nano, 9, 2968-2980(2015).

    [16] A. E. Miroshnichenko, Y. S. Kivshar. Fano resonances in all-dielectric oligomers. Nano Lett., 12, 6459-6463(2012).

    [17] H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, H. Chen. Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano, 9, 436-448(2015).

    [18] R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, Y. S. Kivshar. Multipolar coupling in hybrid metal dielectric metasurfaces. ACS Photonics, 3, 349-353(2016).

    [19] T. Feng, Y. Xu, W. Zhang, A. E. Miroshnichenko. Ideal magnetic dipole scattering. Phys. Rev. Lett., 118, 173901(2017).

    [20] Y.-H. Deng, Z.-J. Yang, J. He. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Opt. Express, 26, 31116-31128(2018).

    [21] Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, M. Soljačić. Low-loss plasmonic dielectric nanoresonators. Nano Lett., 17, 3238-3245(2017).

    [22] Q. Zhao, Z. J. Yang, J. He. Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Front. Phys., 13, 137801(2018).

    [23] H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, S. Deng. Resonance coupling in silicon nanosphere-J-aggregate heterostructures. Nano Lett., 16, 6886-6895(2016).

    [24] J. Yan, C. Ma, P. Liu, C. Wang, G. Yang. Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove. Light Sci. Appl., 6, e16197(2017).

    [25] S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, A. Alù. Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures. ACS Appl. Mater. Inter., 10, 16690-16697(2018).

    [26] S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, Z.-H. Chen. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures. ACS Photonics, 5, 1628-1639(2018).

    [27] Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, H.-Q. Lin. Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates. ACS Photonics, 5, 3838-3848(2018).

    [28] A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar. All-dielectric optical nanoantennas. Opt. Express, 20, 20599-20604(2012).

    [29] M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua. Dielectric antennas—a suitable platform for controlling magnetic dipolar emission. Opt. Express, 20, 13636-13650(2012).

    [30] P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, J. Aizpurua. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J. Phys. Chem. C, 117, 13573-13584(2013).

    [31] D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, S. Bidault. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas. Phys. Rev. Appl., 6, 064016(2016).

    [32] R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, N. Bonod. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett., 16, 5143-5151(2016).

    [33] A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, M. L. Brongersma. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics, 12, 284-290(2018).

    [34] W. Zhang, A. O. Govorov, G. W. Bryant. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett., 97, 146804(2006).

    [35] R. D. Artuso, G. W. Bryantt. Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability. Nano Lett., 8, 2106-2111(2008).

    [36] R. D. Artuso, G. W. Bryant. Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B, 82, 195419(2010).

    [37] A. Manjavacas, F. J. García de Abajo, P. Nordlander. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett., 11, 2318-2323(2011).

    [38] W. Zhang, A. O. Govorov. Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity. Phys. Rev. B, 84, 081405(2011).

    [39] P. Torma, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 78, 013901(2015).

    [40] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).

    [41] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [42] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [43] D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, T. Shegai. Novel nanostructures and materials for strong light matter interactions. ACS Photonics, 5, 24-42(2017).

    [44] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, S. A. Maier. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888-3912(2011).

    [45] P. Biagioni, J.-S. Huang, B. Hecht. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys., 75, 024402(2012).

    [46] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329, 930-933(2010).

    [47] C. M. Dodson, R. Zia. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths. Phys. Rev. B, 86, 125102(2012).

    [48] T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia. Quantifying the magnetic nature of light emission. Nat. Commun., 3, 979(2012).

    [49] M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, L. Novotny. Excitation of magnetic dipole transitions at optical frequencies. Phys. Rev. Lett., 114, 163903(2015).

    [50] T. Feng, Y. Xu, Z. Liang, W. Zhang. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett., 41, 5011-5014(2016).

    [51] J. Li, N. Verellen, P. Van Dorpe. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics, 4, 1893-1898(2017).

    [52] M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, M. Mivelle. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett., 18, 3481-3487(2018).

    [53] T. Feng, W. Zhang, Z. Liang, Y. Xu, A. E. Miroshnichenko. Isotropic magnetic Purcell effect. ACS Photonics, 5, 678-683(2017).

    [54] S. M. Hein, H. Giessen. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett., 111, 026803(2013).

    [55] M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, M. F. Garcia-Parajo. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics, 2, 1071-1076(2015).

    [56] K. Yao, Y. Liu. Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality. ACS Photonics, 3, 953-963(2016).

    [57] D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, A. Alù. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev., 11, 1600268(2017).

    [58] A. Yariv. Quantum Electronics(1975).

    [59] N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, D. D. Yavuz. Coherent magnetic response at optical frequencies using atomic transitions. Phys. Rev. X, 7, 011005(2017).

    [60] L. Allen, J. H. Eberly. Optical Resonance and Two-Level Atoms(1987).

    [61] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(2008).

    [62] A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J. J. Sáenz. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express, 19, 4815-4826(2011).

    [63] E. D. Palik, E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [64] R. M. Macfarlane, R. M. Shelby. Homogeneous line broadening of optical transitions of ions and molecules in glasses. J. Lumin., 36, 179-207(1987).

    [65] F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, R. M. Macfarlane. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5. Phys. Rev. B, 68, 085109(2003).

    [66] H. Chew. Transition rates of atoms near spherical surfaces. J. Chem. Phys., 87, 1355-1360(1998).

    Qian Zhao, Zhong-Jian Yang, Jun He, "Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures," Photonics Res. 7, 1142 (2019)
    Download Citation