• Photonics Research
  • Vol. 9, Issue 11, 11002152 (2021)
Chang-Long Zhu1, Yu-Long Liu2, Lan Yang3, Yu-Xi Liu4、5、6、*, and Jing Zhang1、5、7、*
Author Affiliations
  • 1Department of Automation, Tsinghua University, Beijing 100084, China
  • 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 3Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
  • 4Institute of Microelectronics, Tsinghua University, Beijing 100084, China
  • 5Center for Quantum Information Science and Technology, BNRist, Beijing 100084, China
  • 6e-mail: yuxiliu@mail.tsinghua.edu.cn
  • 7e-mail: jing-zhang@mail.tsinghua.edu.cn
  • show less

    Abstract

    Synchronization has great impacts in various fields such as self-clocking, communication, and neural networks. Here, we present a mechanism of synchronization for two mechanical modes in two coupled optomechanical resonators with a parity-time (PT)-symmetric structure. It is shown that the degree of synchronization between the two far-off-resonant mechanical modes can be increased by decreasing the coupling strength between the two optomechanical resonators due to the large amplification of optomechanical interaction near the exceptional point. Additionally, when we consider the stochastic noises in the optomechanical resonators by working near the exceptional point, we find that more noises can enhance the degree of synchronization of the system under a particular parameter regime. Our results open up a new dimension of research for PT-symmetric systems and synchronization.
    Copy Citation Text
    Chang-Long Zhu, Yu-Long Liu, Lan Yang, Yu-Xi Liu, Jing Zhang. Synchronization in PT-symmetric optomechanical resonators[J]. Photonics Research, 2021, 9(11): 11002152
    Download Citation
    Category: Nonlinear Optics
    Received: Feb. 23, 2021
    Accepted: Aug. 30, 2021
    Published Online: Oct. 9, 2021
    The Author Email: Yu-Xi Liu (yuxiliu@mail.tsinghua.edu.cn), Jing Zhang (jing-zhang@mail.tsinghua.edu.cn)