• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056018 (2024)
Alex Dorn1,†, Hans Zappe1, and Çağlar Ataman2,*
Author Affiliations
  • 1University of Freiburg, Department of Microsystems Engineering, Laboratory for Micro-Optics, Freiburg, Germany
  • 2University of Freiburg, Department of Microsystems Engineering, Microsystems for Biomedical Imaging Group, Freiburg, Germany
  • show less
    DOI: 10.1117/1.APN.3.5.056018 Cite this Article Set citation alerts
    Alex Dorn, Hans Zappe, Çağlar Ataman, "Conjugate adaptive optics extension for commercial microscopes," Adv. Photon. Nexus 3, 056018 (2024) Copy Citation Text show less
    References

    [1] M. J. Booth, M. A. Neil, T. Wilson. Aberration correction for confocal imaging in refractive-index-mismatched media. J. Microsc., 192, 90-98(1998).

    [2] J. Cui et al. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media. Opt. Express, 30, 11809-11824(2022).

    [3] M. Schwertner et al. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry. J. Microsc., 213, 11-19(2004).

    [4] M. Schwertner, M. J. Booth, T. Wilson. Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Opt. Express, 12, 6540-6552(2004).

    [5] D. L. Fried. Anisoplanatism in adaptive optics. J. Opt. Soc. Am., 72, 52-61(1982).

    [6] J. M. Beckers. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics, 2, 693(1988).

    [7] D. C. Johnston, B. M. Welsh. Analysis of multiconjugate adaptive optics. J. Opt. Soc. Amer. A, 11, 394-408(1994).

    [8] F. J. Rigaut, B. L. Ellerbroek, R. Flicker. Principles, limitations, and performance of multiconjugate adaptive optics. Proc. SPIE, 4007, 1022-1031(2000).

    [9] R. D. Simmonds, M. J. Booth. Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy. J. Opt., 15, 094010(2013).

    [10] F. Rigaut, B. Neichel. Multiconjugate adaptive optics for astronomy. Annu. Rev. Astron. Astrophys., 56, 277-314(2018).

    [11] J. Thaung et al. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging. Opt. Express, 17, 4454-4467(2009).

    [12] J. Mertz, H. Paudel, T. G. Bifano. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt., 54, 3498-3506(2015).

    [13] J. Li et al. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor. Optica, 2, 682-688(2015).

    [14] J. Li, T. G. Bifano, J. Mertz. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination. J. Biomed. Opt., 21, 121504(2016).

    [15] Y. Kwon et al. Computational conjugate adaptive optics microscopy for longitudinal can lead of cortical myelin. Nat. Commun., 14, 105(2023).

    [16] Q. Zhao et al. Large field of view correction by using conjugate adaptive optics with multiple guide stars. J. Biophotonics, 12, e201800225(2019).

    [17] D. Gong, N. F. Scherer. Tandem aberration correction optics (TACO) in wide-field structured illumination microscopy. Biomed. Opt. Express, 14, 6381-6396(2023).

    [18] K. M. Hampson et al. Closed-loop multiconjugate adaptive optics for microscopy. Proc. SPIE, 11248, 1124809(2020).

    [19] H. P. Paudel et al. Axial range of conjugate adaptive optics in two-photon microscopy. Opt. Express, 23, 20849-20857(2015).

    [20] S. Bonora et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt. Express, 23, 21931-21941(2015).

    [21] H. G. Gowda, U. Wallrabe, M. C. Wapler. Higher order wavefront correction and axial scanning in a single fast and compact piezo-driven adaptive lens. Opt. Express, 31, 23393-23405(2023).

    [22] K. Banerjee et al. Optofluidic adaptive optics. Appl. Opt., 57, 6338-6344(2018).

    [23] P. Rajaeipour et al. Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics. Adv. Photonics, 2, 066005(2020).

    [24] A. Dorn et al. Flexible conjugate adaptive optics with a refractive wavefront modulator. Proc. SPIE, 11966, 1196607(2022).

    [25] P. Rajaeipour et al. Seventh-order wavefront modulation with a gravity-neutral optofluidic deformable phase plate. J. Opt. Microsyst., 1, 034502(2021).

    [26] D. Débarre, M. J. Booth, T. Wilson. Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express, 15, 8176-8190(2007).

    [27] Y. Zhou et al. Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography. Biomed. Opt. Express, 4, 38-50(2013).

    [28] J.-H. Park, W. Sun, M. Cui. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl. Acad. Sci. U. S. A., 112, 9236-9241(2015).

    [29] Z. Qin et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol., 40, 1663-1671(2022).

    [30] M. J. Booth et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U. S. A., 99, 5788-5792(2002).

    [31] D. Débarre et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).

    [32] M. Žurauskas et al. Isosense: frequency enhanced sensorless adaptive optics through structured illumination. Optica, 6, 370-379(2019).

    [33] P. Rajaeipour et al. Optimization-based real-time open-loop control of an optofluidic refractive phase modulator. Appl. Opt., 58, 1064-1072(2019).