• Infrared Technology
  • Vol. 44, Issue 2, 103 (2022)
Hefu ZHONG1、2、3, Libin TANG1、3、*, Lijing YU1、3, and Wenbin ZUO1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology, 2022, 44(2): 103 Copy Citation Text show less
    References

    [1] LI Y, DING Y, ZHANG Y, et al. Photophysical properties of ZnS quantum reducing the persistent photocurrent effect of visible-light ZnO/quantum-dots[J]. Journal of Physics and Chemistry of Solids, 1999, 60(1): 13-15. dot phototransistors via a TiO2 layer[J]. J. Mater. Chem. C, 2020, 8(46):

    [2] Albaladejo-Siguan M, Baird E C, Becker-Koch D, et al. Stability of 16384.quantum dot solar cells: a matter of (life)time[J]. Adv. Energy Mater, 2021, [7] ZHAO C, LIU Y, CHEN L Y, et al. Transparent CsPbBr3 quantum dot 11(12): 2003457. photodetector with a vertical transistor structure[J]. ACS Appl. Electron.

    [3] Efros A L, Brus L E. Nanocrystal quantum dots: from discovery to modern Mater., 2021, 3(1): 337-343.development[J]. ACS Nano, 2021, 15(4): 6192-6210. [8] Pak S, Cho Y, Hong J, et al. Consecutive junction-induced efficient charge

    [4] ZHENG S, CHEN J, Johansson E M J, et al. PbS colloidal quantum dot separation mechanisms for high-performance MoS2/quantum dot photo-inks for infrared solar cells[J]. I Science, 2020, 23(11): 101753. transistors[J]. ACS. Appl. Mater. Interfaces, 2018, 10(44): 38264-38271.

    [5] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum [9] Kufer D, Lasanta T, Bernechea M, et al. Interface engineering in hybrid dot photodetectors[J]. Adv. Mater. 2015, 27(1): 176-180. quantum dot.2D phototransistors[J]. ACS Photonics, 2016, 3(7): 1324-1330.

    [6] Zdemir O, Ramiro I, Gupta S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm[J]. ACS Photonics, 2019, 6(10): 2381-2386.

    [7] WANG X, XU K, YAN X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8403-8410.

    [8] ZHANG J, XU J, CHEN T, et al. Toward broadband imaging: surface-engineered PbS quantum dot/perovskite composite integrated ultra-sensitive photodetectors[J]. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430-44437.

    [9] TANG X, Ackerman M M, SHEN G, et al. Towards infrared electronic eyes: flexible colloidal quantum dots photovoltaic detectors enhanced by resonant cavity[J]. Small, 2019, 15(12): 1804920.

    [10] Manders J R, LAI T H, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24(45): 7205-7210.

    [11] Choi H T, KANG J H, Ahn J, et al. Zero-dimensional PbS quantum dot.InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS Photonics, 2020, 7(8): 1932-1941.

    [12] HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors[J]. Adv. Funct. Mater., 2016, 27(2): 1603605.

    [13] FENG Y, CHANG H, LIU Y, et al. Ultralow dark current infrared photodetector based on SnTe quantum dots beyond 2 μm at room temperature[J]. Nanotechnology, 2021, 32(19): 195602.

    [14] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid grapheme-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

    [15] HUO N, Gupta S, Konstantatos G, et al. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm[J]. Adv. Mater., 2017, 29(17): 1606576.

    [16] CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365.

    [17] LIU Y, ZHAO C, LI J, et al. Highly sensitive CuInS2/ZnS core-shell quantum dot photodetectors[J]. ACS Appl. Electron. Mater., 2021, 3(3): 1236-1243.

    [18] TANG X, CHEN M, Kamath A, et al. Colloidal quantum-dots/ graphene/silicon dual-channel detection of visible light and short-wave infrared[J]. ACS Photonics, 2020, 7(5): 1117-1121.

    [19] Chu A, Goubet N, Martinez B, et al. Near unity absorption in nanocrystal based short wave infrared photodetectors using guided mode resonators[J]. ACS Photonics, 2019, 6(10): 2553-2561.

    [20] SUN Z, LIU Z, LI J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv. Mater,2012, 24(43): 5878-5883.

    [21] Veeramalai C P, Kollu P, LIN G, et al. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics[J]. Nanotechnology, 2021, 23(31): 315204.

    [22] Yousefi Amin A, Killilea N A, Sytnyk M, et al. Fully printed infrared photodetectors from PbS nanocrystals with Perovskite ligands[J]. ACS Nano, 2019, 13(2): 2389-2397.

    [23] Grotevent M J, Hail C U, Yakunin S, et al. Temperature-dependent charge carrier transfer in colloidal quantum dot/graphene infrared photo- detectors[J]. ACS Appl. Mater. Interfaces, 2021, 13(1): 848-856.

    [24] SUN Y, LIU Z, DING Y, et al. Flexible broadband photodetectors enabled by MXene/PbS quantum dots hybrid structure[J]. IEEE Electron Device Letters, 2021, 42(12): 1814-1817.

    [25] XU K, ZHOU W, NING Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors[J]. Small, 2020, 16(47): 2003397.

    [26] Jana M K, Chithaiah P, Murali B, et al. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface[J].J. Mater. Chem. C, 2013, 1(39): 6184.

    [27] HE J, QIAO K, GAO L et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors[J]. ACS Photonics, 2014, 1(10): 936-943.

    [28] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954.

    [29] Adinolfi V, Sargent E H. Photovoltage field-effect transistors[J]. Nature, 2017, 45(7653): 252-252.

    [30] TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277.

    [31] GENG X, WANG F, TIAN H, et al. Ultrafast photodetector by integrating Perovskite directly on silicon wafer[J]. ACS Nano, 2020, 14(3): 2860-2868.

    [32] TAI C Y, Hsiao B Y. Characterization of zirconia powder synthesized via reverse microemulsion precipitation[J]. Chem. Eng. Comm., 2005, 192(10-12): 1525-1540.

    [33] TAI C Y, Hsiao B Y, Chiu H Y. Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 237(1-3): 105-111.

    [34] HUANG K, YIN L, LIU S, et al. Preparation and formation mechanism of A12O3 nanoparticles by reverse microemulsion[J]. Trans. Nonfcrrous Met. Soc. China, 2007, 17(3): 633-637.

    [35] Khiew P S, Radiman S, HUANG N M, et al. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion[J]. Journal of Crystal Growth, 2003, 254(1-2): 235-243.

    [36] Haouemi K, Touati F, Gharbi N. Characterization of a new TiO2 nanoflower prepared by the Sol-Gel process in a reverse microemulsion[J].J. Inorg Organomet Polym, 2011, 21(4): 929-936.

    [37] CAO M, HE X, CHEN J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries[J]. Crystal Growth & Design, 2007, 7(1): 170-174.

    [38] GE J, CHEN W, LIU L, et al. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions[J]. Chem. Eur. J., 2006, 12(25): 6552-6558.

    [39] Vestal C R, ZHANG Z J. Synthesis of CoCrFeO4 Nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties[J]. Chem. Mater., 2002, 14(9): 3817-3822.

    [40] XU J, YIN A, ZHAO J. Surfactant-free microemulsion composed of oleic acid, n-propanol, and H2O[J]. J. Phys. Chem. B, 2013, 117(1): 450-456.

    [41] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am. Chem. Soc., 1992, 114(13): 5221-5230.

    [42] Kirmani A R, Luther J M, Abolhasani M, et al. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing[J]. ACS Energy Lett., 2020, 5(9): 3069-3100.

    [43] YAN C, HUANG C, YANG J, et al. Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals[J]. Chem. Commun., 2012, 48(20): 2603-2605.

    [44] Kulpa-Greszta M, Tomaszewska A, Dziedzic A, et al. Rapid hot-injection as a tool for control of magnetic nanoparticle size and morphology[J]. RSC Adv., 2021, 11(34): 20708-20719.

    [45] Ikeda S, Sogawa S, Tokai Y, et al. Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol[J]. RSC Adv., 2014, 4(77): 40969-40972.

    [46] Timonen J V I, Ikkala O, Ras R H A. et al. From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation[J]. Angew. Chem. Int. Ed., 2011, 50(9): 2080-2084.

    [47] TANG X, TANG X, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404.

    [48] Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Lett., 2016, 16(2): 1282-1286.

    [49] XU K, XIAO X, ZHOU W, et al. Inverted Si:PbS colloidal quantum dot heterojunction-based infrared photodetector[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15414-15421.

    [50] Vafaie M, FAN J Z, Najarian A M, et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm[J]. Matter, 2021, 4(3): 1042-1053.

    [51] Sulaman M, YANG S, SONG T, et al. High performance solution-processed infrared photodiode based on ternary PbSxSe1-x colloidal quantum dots[J]. RSC Adv., 2016, 6(90): 87730-87737.

    [52] TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48): 1803158.

    [53] Jagtap A, Martinez B, Goubet N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11): 4569-4576.

    [54] XU Q, MENG L, Sinha K, et al. Ultrafast colloidal quantum dot infrared photodiode[J]. ACS Photonics, 2020, 7(5): 1297-1303.

    [55] Graddage N, OUYANG J Y, LU J, et al. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2 scaffolds[J]. ACS Appl. Nano Mater., 2020, 3(12): 12209-12217.

    [56] ZHANG X, Cappel U B, JIA D, et al. Probing and controlling surface passivation of PbS quantum dot solid for improved performance of infrared absorbing solar cells[J]. Chem. Mater., 2019, 31(11): 4081-4091.

    [57] YANG X, YANG J, Khan J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nano-Micro Lett., 2020, 12(1): 37.

    [58] LIU Y, LI F, SHI G, et al. PbSe quantum dot solar cells based on directly synthesized semiconductive inks[J]. ACS Energy Lett., 2020, 5(12): 3797-3803.

    [59] ZHANG Y, WU G, DING C, et al. Surface-modifed graphene oxide/lead sulfde hybrid film-forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells[J]. Nano-Micro Lett., 2020, 12(9): 111.

    [60] ZHANG Y, KAN Y, GAO K, et al. Hybrid quantum dot/organic heterojunction: a route to improve open-circuit voltage in PbS colloidal quantum dot solar cells[J]. ACS Energy Lett., 2020, 5(7): 2335-2342.

    CLP Journals

    [1] LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology, 2023, 45(12): 1263

    ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology, 2022, 44(2): 103
    Download Citation