• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 9, 3259 (2022)
ZHANG Mengyu1、2、*, LI Tai1、2, DU Shanlin1、2, HUANG Zhenling1、2, ZHAO Liang1、2, LYU Guoqiang1、2, and MA Wenhui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Mengyu, LI Tai, DU Shanlin, HUANG Zhenling, ZHAO Liang, LYU Guoqiang, MA Wenhui. Research Progress on Oxygen Control Technology During Preparation of Czochralski Single-Crystal Silicon[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3259 Copy Citation Text show less
    References

    [4] DASH W C. Silicon crystals free of dislocations[J]. Journal of Applied Physics, 1958, 29(4): 736-737.

    [5] HURLE D T J. Control of diameter in Czochralski and related crystal growth techniques[J]. Journal of Crystal Growth, 1977, 42: 473-482.

    [6] VORONKOV V V. The mechanism of swirl defects formation in silicon[J]. Journal of Crystal Growth, 1982, 59(3): 625-643.

    [7] SERIES R W, HURLE D T J. The use of magnetic fields in semiconductor crystal growth[J]. Journal of Crystal Growth, 1991, 113(1/2): 305-328.

    [8] PUZANOV N I, EIDENZON A M, PUZANOV D N. Modelling microdefect distribution in dislocation-free Si crystals grown from the melt[J]. Journal of Crystal Growth, 1997, 178(4): 468-478.

    [9] KANDA I, SUZUKI T, KOJIMA K. Influence of crucible and crystal rotation on oxygen-concentration distribution in large-diameter silicon single crystals[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 669-674.

    [10] HOSHIKAWA K, HUANG X M. Oxygen transportation during Czochralski silicon crystal growth[J]. Materials Science and Engineering: B, 2000, 72(2/3): 73-79.

    [11] LUO J P, ZHOU C Y, LI Q H, et al. Diffusion coefficients of carbon, oxygen and nitrogen in silicon melt[J]. Journal of Crystal Growth, 2022, 580: 126476.

    [12] BOND W L, KAISER W. Interstitial versus substitutional oxygen in silicon[J]. Journal of Physics and Chemistry of Solids, 1960, 16(1/2): 44-45.

    [13] ONO T, SUGIMURA W, KIHARA T, et al. Wafer strength and slip generation behavior in 300 mm wafers[J]. ECS Transactions, 2006, 2(2): 109-122.

    [14] ZENG Z D, MA X Y, CHEN J H, et al. Effect of oxygen precipitates on dislocation motion in Czochralski silicon[J]. Journal of Crystal Growth, 2010, 312(2): 169-173.

    [16] FUKUSHIMA W, HARADA H, MIYAMURA Y, et al. Effect of oxygen on dislocation multiplication in silicon crystals[J]. Journal of Crystal Growth, 2018, 486: 45-49.

    [17] BINNS M J, KEARNS J, GOOD E A. Impact of oxygen-related defects on lifetime degradation in N-type CCZ/CZ mono-crystalline silicon during cell processing[J]. ECS Transactions, 2014, 60(1): 1233-1238.

    [18] HWANG J M, SCHRODER D K. Recombination properties of oxygen-precipitated silicon[J]. Journal of Applied Physics, 1986, 59(7): 2476-2487.

    [19] LI J Y, LIU Y J, TAN Y. Characterisation of single crystalline silicon grown by Czochralski method[J]. Materials Research Innovations, 2012, 16(6): 425-428.

    [20] NIEWELT T, SCHN J, WARTA W, et al. Degradation of crystalline silicon due to boron-oxygen defects[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 383-398.

    [21] CHEN L, YU X G, CHEN P, et al. Effect of oxygen precipitation on the performance of Czochralski silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(11): 3148-3151.

    [22] LIN A M R, DUTTON R W, ANTONIADIS D A, et al. The growth of oxidation stacking faults and the point defect generation at Si-SiO interface during thermal oxidation of silicon[J]. Journal of the Electrochemical Society, 1981, 128(5): 1121-1130.

    [23] SADAMITSU S, OKUI M, KOJISUEOKA, et al. A model for the formation of oxidation-induced stacking faults in Czochralski silicon[J]. Japanese Journal of Applied Physics, 1995, 34: L597-L599.

    [24] SINNO T, BROWN R A, VON AMMON W, et al. Point defect dynamics and the oxidation-induced stacking-fault ring in Czochralski-grown silicon crystals[J]. Journal of the Electrochemical Society, 1998, 145(1): 302-318.

    [25] KAISER W, FRISCH H L, REISS H. Mechanism of the formation of donor states in heat-treated silicon[J]. Physical Review, 1958, 112(5): 1546-1554.

    [26] CORBETT J W, FRISCH H L, SNYDER L C. On the thermal donors in silicon[J]. Materials Letters, 1984, 2(3): 209-210.

    [27] WAGNER P, HAGE J. Thermal double donors in silicon[J]. Applied Physics A, 1989, 49(2): 123-138.

    [28] MIYAMURA Y, HARADA H, NAKANO S, et al. Do thermal donors reduce the lifetimes of Czochralski-grown silicon crystals?[J]. Journal of Crystal Growth, 2018, 489: 1-4.

    [29] OLSEN E, HELANDER M I, MEHL T, et al. Spectral characteristics and spatial distribution of thermal donors in N-type Czochralski-silicon wafers[J]. Physica Status Solidi, 2020, 217(6): 1900884.

    [31] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Surface-treated crucibles for improved zero dislocation performance: US5976247[P]. 1999-11-02.

    [32] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Methods for improving zero dislocation yield of single crystals: US5980629[P]. 1999-11-09.

    [34] STURM F, TREMPA M, SCHUSTER G, et al. Material evaluation for engineering a novel crucible setup for the growth of oxygen free Czochralski silicon crystals[J]. Journal of Crystal Growth, 2022, 584: 126582.

    [36] ZHOU B, CHEN W L, LI Z H, et al. Reduction of oxygen concentration by heater design during Czochralski Si growth[J]. Journal of Crystal Growth, 2018, 483: 164-168.

    [40] ZULEHNER W. Czochralski growth of silicon[J]. Journal of Crystal Growth, 1983, 65(1/2/3): 189-213.

    [41] CHEN J C, TENG Y Y, WUN W T, et al. Numerical simulation of oxygen transport during the CZ silicon crystal growth process[J]. Journal of Crystal Growth, 2011, 318(1): 318-323.

    [42] POPESCU A, BELLMANN M P, VIZMAN D. Effect of crucible rotation on the temperature and oxygen distributions in Czochralski grown silicon for photovoltaic applications[J]. CrystEngComm, 2021, 23(2): 308-316.

    [45] BORGHESI A, PIVAC B, SASSELLA A, et al. Oxygen precipitation in silicon[J]. Journal of Applied Physics, 1995, 77(9): 4169-4244.

    [46] MACHIDA N, SUZUKI Y, ABE K, et al. The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski-grown silicon crystals[J]. Journal of Crystal Growth, 1998, 186(3): 362-368.

    [47] KALAEV V V, EVSTRATOV I Y, MAKAROV Y N. Gas flow effect on global heat transport and melt convection in Czochralski silicon growth[J]. Journal of Crystal Growth, 2003, 249(1/2): 87-99.

    [48] TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2012, 352(1): 167-172.

    [49] PEARCE C W, JACCODINE R J, FILO A J, et al. Oxygen content of heavily doped silicon[J]. Applied Physics Letters, 1985, 46(9): 887-889.

    [50] BORGHESI A, GEDDO M, GUIZZETTI G, et al. Interstitial oxygen determination in heavily doped silicon[J]. Journal of Applied Physics, 1990, 68(4): 1655-1660.

    [51] WIJARANAKULA W. Oxygen diffusion in carbon-doped silicon[J]. Journal of Applied Physics, 1990, 68(12): 6538-6540.

    [52] WIJARANAKULA W. Oxygen precipitation and defects in heavily doped Czochralski silicon[J]. Journal of Applied Physics, 1992, 72(7): 2713-2723.

    [53] NOZAKI T, ITOH Y, MASUI T, et al. Behavior of oxygen in the crystal formation and heat treatment of silicon heavily doped with antimony[J]. Journal of Applied Physics, 1986, 59(7): 2562-2565.

    [54] HUANG X M, TERASHIMA K, IZUNOME K, et al. Effect of antimony-doping on the oxygen segregation coefficient in silicon crystal growth[J]. Journal of Crystal Growth, 1995, 149(1/2): 59-63.

    [55] GUPTA S, MESSOLORAS S, SCHNEIDER J R, et al. Oxygen precipitation in carbon-doped silicon[J]. Semiconductor Science and Technology, 1992, 7(1): 6-11.

    [56] SCALA R, PORRINI M, VORONKOV V. Impact of arsenic and phosphorus concentration on oxygen content in heavily doped silicon single crystal[J]. Journal of Crystal Growth, 2020, 548: 125820.

    [57] WANG C, ZHANG H, WANG T H, et al. A continuous Czochralski silicon crystal growth system[J]. Journal of Crystal Growth, 2003, 250(1/2): 209-214.

    [58] XU H, TIAN X R. Minority carrier lifetime of N-type mono-crystalline silicon produced by continuous Czochralski technology and its effect on hetero-junction solar cells[J]. Energy Procedia, 2016, 92: 708-714.

    [59] JAFRI I H, PRASAD V, ANSELMO A P, et al. Role of crucible partition in improving Czochralski melt conditions[J]. Journal of Crystal Growth, 1995, 154(3/4): 280-292.

    [60] KITASHIMA T, LIU L J, KITAMURA K, et al. Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique[J]. Journal of Crystal Growth, 2004, 267(3/4): 574-582.

    [61] ZHAO W H, LI J C, LIU L J. Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264.

    [62] NGUYEN T H T, CHEN J C, LO S C. Effects of different partition depths on heat and oxygen transport during continuous Czochralski (CCz) silicon crystal growth[J]. Journal of Crystal Growth, 2022, 583: 126546.

    [64] HIRATA H, HOSHIKAWA K. Silicon crystal growth in a cusp magnetic field[J]. Journal of Crystal Growth, 1989, 96(4): 747-755.

    [67] CHEN J C, GUO P C, CHANG C H, et al. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field[J]. Journal of Crystal Growth, 2014, 401: 888-894.

    ZHANG Mengyu, LI Tai, DU Shanlin, HUANG Zhenling, ZHAO Liang, LYU Guoqiang, MA Wenhui. Research Progress on Oxygen Control Technology During Preparation of Czochralski Single-Crystal Silicon[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3259
    Download Citation