[1] 刘飞. 基于改进U-Net网络的光学卫星影像云检测方法研究[D]. 武汉: 武汉大学, 2022.LIUF. Research on Cloud Detection Method from Optical Satellite Image Based on Improved U-Net Network[D]. Wuhan: Wuhan University, 2022. (in Chinese)
[2] 邱炜. 面向空间光学成像任务的敏捷运动体建模与优化控制[D]. 杭州: 浙江大学, 2021.QIUW. Modeling and Optimization-Based Control of Agile Vehicle for Space Optical Imaging[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[3] 李强, 孔林, 张雷, 等. 多光谱大幅宽光学遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(4): 904-913. doi: 10.3788/OPE.20202804.0904LIQ, KONGL, ZHANGL, et al. Thermal design and validation of multispectral max width optical remote sensing satellite[J]. Opt. Precision Eng., 2020, 28(4): 904-913.(in Chinese). doi: 10.3788/OPE.20202804.0904
[4] 柏添, 孔林, 黄健, 等. 低倾角轨道微小遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(11): 2497-2506. doi: 10.37188/OPE.20202811.2497BAIT, KONGL, HUANGJ, et al. Thermal design and verification of micro remote-sensing satellite in low inclination orbit[J]. Opt. Precision Eng., 2020, 28(11): 2497-2506.(in Chinese). doi: 10.37188/OPE.20202811.2497
[5] 鲁盼, 赵振明, 高腾, 等. 高分辨率立体测绘相机系统热控设计及验证[J]. 北京航空航天大学学报, 2023, 49(4): 768-779.LUP, ZHAOZ M, GAOT, et al. Thermal control design and verification for high resolution stereo mapping camera system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 768-779.(in Chinese)
[6] 刘云鹤, 刘凤晶, 于龙江. GEO光学遥感卫星阳光入侵规避方法[J]. 航天器工程, 2014, 23(6): 24-29. doi: 10.3969/j.issn.1673-8748.2014.06.005LIUY H, LIUF J, YUL J. Sunlight invation avoidance method of GEO optical remote sensing satellite[J]. Spacecraft Engineering, 2014, 23(6): 24-29.(in Chinese). doi: 10.3969/j.issn.1673-8748.2014.06.005
[7] 彭洲, 李振松, 乔国栋, 等. 地球静止轨道遥感卫星相机太阳规避设计[J]. 中国空间科学技术, 2015, 35(2): 57-62, 76.PENGZ, LIZ S, QIAOG D, et al. Sunlight avoidance design for camera of geostationary orbit remote sensing satellite[J]. Chinese Space Science and Technology, 2015, 35(2): 57-62, 76.(in Chinese)
[8] X X SHI, X D LI, Y WANG. A mission planning method for sunlight avoidance period of GEO optical remote sensing satellite. Journal of Physics: Conference Series, 2364(2022).
[9] 薛武, 王鹏, 钟灵毓. 线阵垂轨环扫式光学遥感卫星影像几何纠正[J]. 光学 精密工程, 2021, 29(12): 2924-2934. doi: 10.37188/OPE.20212912.2924XUEW, WANGP, ZHONGL Y. Geometric correction of optical remote sensing satellite images captured by linear array sensors circular scanning perpendicular to the orbit[J]. Opt. Precision Eng., 2021, 29(12): 2924-2934.(in Chinese). doi: 10.37188/OPE.20212912.2924
[10] 李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682LIF, WANQ H, LIUM M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Opt. Precision Eng., 2022, 30(14): 1682-1693.(in Chinese). doi: 10.37188/OPE.20223014.1682
[11] 阎鲁滨. 星载相控阵天线的技术现状及发展趋势[J]. 航天器工程, 2012, 21(3): 11-17. doi: 10.3969/j.issn.1673-8748.2012.03.010YANL B. Technology status and developing trends of satellite phased array[J]. Spacecraft Engineering, 2012, 21(3): 11-17.(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.03.010
[12] A AL-RAWI, A DUBOK, S J GELUK et al. Increasing the EIRP by Using FPA-Fed Reflector Antennas, 1623-1624(2016).
[13] 于立, 雷柳洁, 张凯, 等. 低轨星座多波束相控阵天线研究进展与发展趋势[J]. 空间电子技术, 2022, 19(6): 1-11. doi: 10.3969/j.issn.1674-7135.2022.06.001YUL, LEIL J, ZHANGK, et al. Research progress and development trends on low-earth-orbit spaceborne multi-beam phased array antennas[J]. Space Electronic Technology, 2022, 19(6): 1-11.(in Chinese). doi: 10.3969/j.issn.1674-7135.2022.06.001
[14] J J SCHUSS, J UPTON, B MYERS et al. The IRIDIUM main mission antenna concept. IEEE Transactions on Antennas and Propagation, 47, 416-424(1999).
[15] F J DIETRICH, P METZEN, P MONTE. The Globalstar cellular satellite system. IEEE Transactions on Antennas and Propagation, 46, 935-942(1998).
[16] M YAJIMA, T KURODA, T MAEDA et al. Active phased array antenna for WINDS Satellite, 3240(2007).
[17] 任波, 赵良波, 朱富国. 高分三号卫星C频段多极化有源相控阵天线系统设计[J]. 航天器工程, 2017, 26(6): 68-74. doi: 10.3969/j.issn.1673-8748.2017.06.011RENB, ZHAOL B, ZHUF G. Design of C-band multi-polarized active phased array antenna system for GF-3 satellite[J]. Spacecraft Engineering, 2017, 26(6): 68-74.(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.06.011
[18] 陈雪芹, 耿云海, 王峰, 等. 敏捷小卫星对地凝视姿态跟踪控制[J]. 光学 精密工程, 2012, 20(5): 1031-1040. doi: 10.3788/ope.20122005.1031CHENX Q, GENGY H, WANGF, et al. Staring imaging attitude tracking control of agile small satellite[J]. Opt. Precision Eng., 2012, 20(5): 1031-1040.(in Chinese). doi: 10.3788/ope.20122005.1031
[19] 张刘, 张晓寒, 岳庆兴, 等. 光学遥感卫星凝视成像姿态规划及快速仿真方法[J]. 吉林大学学报(工学版), 2021, 51(1): 340-348.ZHANGL, ZHANGX H, YUEQ X, et al. Attitude planning and fast simulation method for staring imaging of optical remote sensing satellite[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 340-348.(in Chinese)
[20] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998.ZHANGR W. Satellite Orbit Attitude Dynamics and Control[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1998.(in Chinese)
[21] 国志磊, 安雪滢, 罗宗富, 等. 轨道动力学方法用于太阳位置精确解算的比较研究[J]. 太阳能学报, 2020, 41(6): 188-195.GUOZ L, ANX Y, LUOZ F, et al. Comparative research of solar position precise algorithm based on methods of orbital mechanics[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 188-195.(in Chinese)
[22] 李文, 赵永超. 地球椭球模型中太阳位置计算的改进[J]. 中国科学院大学学报, 2019, 36(3): 363-375. doi: 10.7523/j.issn.2095-6134.2019.03.010LIW, ZHAOY C. The improvement in solar position calculations in the ellipsoid model of the earth[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(3): 363-375.(in Chinese). doi: 10.7523/j.issn.2095-6134.2019.03.010