• High Power Laser and Particle Beams
  • Vol. 34, Issue 2, 021002 (2022)
Chun Zhang1、2, Lianghua Xie2, Qiuhui Chu2, Yu Liu2, Shan Huang2, Huaqing Song2, Wenjie Wu2, Xi Feng2, Min Li2, Benjian Shen2, Haokun Li2, Rumao Tao2、*, Lixin Xu1, and Jianjun Wang2
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • 2Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.210251 Cite this Article
    Chun Zhang, Lianghua Xie, Qiuhui Chu, Yu Liu, Shan Huang, Huaqing Song, Wenjie Wu, Xi Feng, Min Li, Benjian Shen, Haokun Li, Rumao Tao, Lixin Xu, Jianjun Wang. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002 Copy Citation Text show less
    References

    [1] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 32, 36-39(1961).

    [2] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 62, 41301(2019).

    [4] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [5] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).

    [6] Khitrov V, Minelly J D, Tumminelli R, et al. 3kW singlemode direct diodepumped fiber laser[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. 2014: 89610V.

    [7] Mller F, Krmer R G, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proceedings of SPIE 10897, Fiber Lasers XVI: Technology Systems. 2019: 108970D.

    [8] Wang Y, Kitahara R, Kiyoyama W, et al. 8kW singlestage allfiber Ybdoped fiber laser with a BPP of 0.50 mmmrad[C]Proceedings of SPIE 11260, Fiber Lasers XVII: Technology Systems. 2020: 1126022.

    [9] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [10] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [11] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [12] Li Chunfei. Nonlinear optics: principle applications[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 134143

    [13] Wang Wenliang. Stimulated Raman scattering in high power fiber lasers[D]. Changsha: National University of Defense Technology, 2014: 163

    [14] Naderi S, Dajani I, Grosek J, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 24, 16550-16565(2016).

    [15] Distler V, Möller F, Strecker M, et al. Transverse mode instability in a passive fiber induced by stimulated Raman scattering[J]. Optics Express, 28, 22819-22828(2020).

    [16] Distler V, Möller F, Yildiz B, et al. Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber amplifier[J]. Optics Express, 29, 16175-16181(2021).

    [17] Zhang Hanwei, Xiao Hu, Wang Xiaolin, et al. Mode dynamics in high-power Yb-Raman fiber amplifier[J]. Optics Letters, 45, 3394-3397(2020).

    [18] Chu Qiuhui, Shu Qiang, Chen Zeng, et al. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 8, 595-600(2020).

    [19] Gao Wei, Fan Wenhui, Ju Pei, et al. Effective suppression of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. High Power Laser Science and Engineering, 9, e20(2021).

    [20] Liu Wei, Ma Pengfei, Shi Chen, et al. Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers[J]. Optics Express, 26, 15793-15803(2018).

    [21] Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Oxfd: Elsevier, 2007.

    [22] Dragic P D, Ballato J. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres[J]. Electronics Letters, 49, 895-896(2013).

    [23] Dragic P D, Ballato J, Hawkins T. Compositional tuning of glass f the suppression of nonlinear parasitic fiber laser phenomena[C]Proceedings of SPIE 9081, Laser Technology f Defense Security X. 2014: 908109.

    [24] Ballato J, Dragic P. Materials approaches to mitigating parasitic effects in optical wks: towards the perfect optical fiber[C]Proceedings of the 18th International Conference on Transparent Optical wks. 2016: 14.

    [25] Ballato J, Cavillon M, Dragic P. A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering[J]. International Journal of Applied Glass Science, 9, 263-277(2018).

    [26] Ye Yun, Yang Baolai, Wang Peng, et al. Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber[J]. Laser Physics, 31, 035104(2021).

    [27] Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW singlemode fiber laser with 20m long delivery fiber high SRS suppression[C]Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, Applications. 2016: 972805.

    [28] Shima K, Ikoma S, Uchiyama K, et al. 5kW single stage allfiber Ybdoped singlemode fiber laser f materials processing[C]Proceedings of SPIE 10512, Fiber Lasers XV: Technology Systems. 2018: 105120C.

    [30] Yang Baolai, Zhang Hanwei, Shi Chen, et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 27, 7585-7592(2019).

    [31] Ye Yun, Xi Xiaoming, Shi Chen, et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber[J]. Laser Physics Letters, 16, 085109(2019).

    [32] Tian Yuan, Chen Yizhu, Leng Jinyong, et al. Numerical modeling and optimization of cladding-pumped tapered fiber Raman amplifiers[J]. Optics Communications, 423, 6-11(2018).

    [33] Zeng Lingfa, Xi Xiaoming, Ye Yun, et al. A 1.8 kW fiber laser oscillator employing a section of spindle-shaped core ytterbium-doped fiber[J]. Laser Physics Letters, 17, 095104(2020).

    [35] Zeng Lingfa, Pan Zhiyong, Xi Xiaoming, et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).

    [36] Zenteno L A, Wang J, Walton D T, et al. Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber[J]. Optics Express, 13, 8921-8926(2005).

    [37] Fini J M, Mermelstein M D, Yan M F, et al. Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier[J]. Optics Letters, 31, 2550-2552(2006).

    [38] Fini J M, Nicholson J W. Fibers design with a bendcompensated cladding f distributed wavelength filtering[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. 2014: 89610S.

    [39] Liu Rui, Yan Dapeng, Chen Ming, et al. Enhanced cladding pump absorption of ytterbium-doped double cladding fiber with internally modified cladding structures[J]. Optical Materials Express, 10, 36-45(2020).

    [40] Wang Yong, Martinez-Rios A, Po H. Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser[J]. Optical Fiber Technology, 10, 201-214(2004).

    [41] Wang Yong, Xu Changqing, Po Hong. Analysis of Raman and thermal effects in kilowatt fiber lasers[J]. Optics Communications, 242, 487-502(2004).

    [42] Wang Yong. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers[J]. Optical Engineering, 44, 114202(2005).

    [43] Ye Yun, Xi Xiaoming, Shi Chen, et al. Experimental study of 5-kW high-stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics Journal, 11, 1503508(2019).

    [44] Lai P Y, Chang Chunlin, Huang S L, et al. Effective suppression of stimulated Raman scattering in high power fiber amplifiers using doublepass scheme[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. 2014: 89612T.

    [45] Zhang Tianzi, Ding Yingchun, Liu Zhongxuan, et al. An optimization of Raman effects in tempumped Ybdoped kilowatt fiber amplifiers[C]Proceedings of SPIE 9524, International Conference on Optical Photonic Engineering. 2015: 95240Y.

    [47] Ye Yun, Yang Baolai, Wang Xiaolin, et al. Experimental study of SRS threshold dependence on the bandwidths of fiber Bragg gratings in co-pumped and counter-pumped fiber laser oscillator[J]. Journal of Optics, 21, 025801(2019).

    [48] Schreiber T, Liem A, Freier E, et al. Analysis of stimulated Raman scattering in cw kW fiber oscillats[C]Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, Applications. 2014: 89611T.

    [49] Liu Wei, Ma Pengfei, Lv Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).

    [50] Lin Weixuan. Stimulated Raman scattering intermodal coupling in continuouswave high power fiber lasers[D]. Montreal: McGill University, 2018.

    [51] Jansen F, Nodop D, Jauregui C, et al. Suppression of stimulated Raman scattering in highpower fiber laser systems by lumped spectral filters[C]Proceedings of SPIE 7580, Fiber Lasers VII: Technology, Systems, Applications. 2010: 75802I.

    [52] Nodop D, Jauregui C, Jansen F, et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J]. Optics Letters, 35, 2982-2984(2010).

    [53] Heck M, Bock V, Krmer R G, et al. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings[C]Proceedings of SPIE 10512, Fiber Lasers XV: Technology Systems. 2018: 105121I.

    [54] Jiao Kerong, Shen Hua, Guan Zhiwen, et al. Suppressing stimulated Raman scattering in kW-level continuous-wave MOPA fiber laser based on long-period fiber gratings[J]. Optics Express, 28, 6048-6063(2020).

    [55] Wang Meng, Zhang Yujing, Wang Zefeng, et al. Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers[J]. Optics Express, 25, 1529-1534(2017).

    [56] Wang Meng, Hu Qihao, Liu Le, et al. Suppression of stimulated Raman scattering in a monolithic fiber laser oscillat using chirped tilted fiber Bragg gratings[C]Proceedings of SPIE 10811, HighPower Lasers Applications IX. 2018: 108110V.

    [57] Wang Zefeng, Wang Meng, Hu Qihao. Filtering of stimulated Raman scattering in a monolithic fiber laser oscillator using chirped and tilted fiber Bragg gratings[J]. Laser Physics, 29, 075101(2019).

    [58] Jiao Kerong, Shu Jian, Shen Hua, et al. Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators[J]. High Power Laser Science and Engineering, 7, 02000e31(2019).

    [59] Zhao Xiaofan, Tian Xin, Hu Qihao, et al. Raman suppression in a high-power single-mode fiber oscillator using a chirped and tilted fiber Bragg grating[J]. Laser Physics Letters, 18, 035103(2021).

    [60] Wang Meng, Liu Le, Wang Zefeng, et al. Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings[J]. High Power Laser Science and Engineering, 7, e18(2019).

    [61] Tian Xin, Zhao Xiaofan, Wang Meng, et al. Effective suppression of stimulated Raman scattering in direct laser diode pumped 5 kilowatt fiber amplifier using chirped and tilted fiber bragg gratings[J]. Laser Physics Letters, 17, 085104(2020).

    [62] Wang Meng, Wang Zefeng, Liu Le, et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J]. Photonics Research, 7, 167-171(2019).

    [63] Tian Xin, Zhao Xiaofan, Wang Meng, et al. Influence of Bragg reflection of chirped tilted fiber Bragg grating on Raman suppression in high-power tandem pumping fiber amplifiers[J]. Optics Express, 28, 19508-19517(2020).

    [65] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. Experimental investigations on multi-kilowatt all-fiber distributed side-pumped oscillators[J]. Laser Physics, 29, 075103(2019).

    [66] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 3kilowatt allfiber distributed sidepumped oscillat with high SRS suppression[C]Proceedings of 2018 Asia Communications Photonics Conference. 2018.

    [67] Huang Zhihe, Cao Jianqiu, An Yingye, et al. A kilowatt all-fiber cascaded amplifier[J]. IEEE Photonics Technology Letters, 27, 1683-1686(2015).

    [68] Ying Hanyuan, Yu Yu, Cao Jianqiu, et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J]. Laser Physics Letters, 14, 065102(2017).

    [69] Wang Jianming, Yan Dapeng, Xiong Songsong, et al. High power all-fiber amplifier with different seed power injection[J]. Optics Express, 24, 14463-14469(2016).

    [70] Tec P S, Lewis R J, Alam S U, et al. 200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA[J]. Optics Express, 21, 25883-25889(2013).

    [71] Ying Hanyuan, Cao Jianqiu, Yu Yu, et al. Raman-noise enhanced stimulated Raman scattering in high-power continuous-wave fiber amplifier[J]. Optik, 144, 163-171(2017).

    [72] Hu Shuling, Zhang Chunxi, Wang Shouchao, et al. Selfpulsing behavi in highpower ytterbiumdoped fiber lasers[C]Proceedings of SPIE 6823, HighPower Lasers Applications IV. 2008: 68230D.

    [73] Bock V, Schultze T, Liem A, et al. The influence of different seed sources on Stimulated Raman Scattering in fiber amplifiers[C]The European Conference on Lasers ElectroOptics 2017. 2017: CJ_4_3.

    [74] Li Tenglong, Zha Congwen, Sun Yinhong, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 28, 105101(2018).

    [75] Lin H, Tao R, Li C, et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019).

    [76] Liu Wei, Ma Pengfei, Lv Haibin, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source[J]. Optics Express, 24, 8708-8717(2016).

    [77] Bock V, Liem A, Schreiber T, et al. Explanation of Stimulated Raman Scattering in high power fiber systems[C]Proceedings of SPIE 10512, Fiber Lasers XV: Technology Systems. 2018: 105121F.

    [78] Li Tenglong, Ke Weiwei, Ma Yi, et al. Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser[J]. Journal of the Optical Society of America B, 36, 1457-1465(2019).

    [79] Wang Yanshan, Peng Wanjing, Ke Weiwei, et al. Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier[J]. Optical and Quantum Electronics, 52, 193(2020).

    [80] Yin Lu, Han Zhigang, Shen Hua, et al. Suppression of inter-modal four-wave mixing in high-power fiber lasers[J]. Optics Express, 26, 15804-15818(2018).

    [81] Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 24, 1729-1738(2007).

    [82] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 14, 011901(2016).

    [83] Liu Wei, Ma Pengfei, Zhou Pu, et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers[J]. Optics Express, 28, 593-606(2020).

    CLP Journals

    [1] Baolai Yang, Huan Yang, Yun Ye, Xiaoming Xi, Hanwei Zhang, Liangjin Huang, Peng Wang, Chen Shi, Xiaolin Wang, Zhiping Yan, Zhiyong Pan, Zefeng Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen. 6 kW broadband fiber laser based on home-made ytterbium-doped fiber with gradually varying spindle-shape structure[J]. High Power Laser and Particle Beams, 2022, 34(8): 081001

    [2] Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005

    Chun Zhang, Lianghua Xie, Qiuhui Chu, Yu Liu, Shan Huang, Huaqing Song, Wenjie Wu, Xi Feng, Min Li, Benjian Shen, Haokun Li, Rumao Tao, Lixin Xu, Jianjun Wang. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002
    Download Citation