• Chinese Journal of Lasers
  • Vol. 50, Issue 20, 2002103 (2023)
Siyu Chen1, Yelin Xia2, Xingyu Liu1, Jianbo Lei2, and Tao Wang1、*
Author Affiliations
  • 1College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
  • 2Laser Technology Institute, Tiangong University, Tianjin 300387, China
  • show less
    DOI: 10.3788/CJL230686 Cite this Article Set citation alerts
    Siyu Chen, Yelin Xia, Xingyu Liu, Jianbo Lei, Tao Wang. Microstructure and Wear Resistance of Tungsten-Carbide-Reinforced Nickel Copper Alloy Deposited by Circular Oscillating Laser[J]. Chinese Journal of Lasers, 2023, 50(20): 2002103 Copy Citation Text show less
    Powder morphologies. (a) NiCu; (b) WC
    Fig. 1. Powder morphologies. (a) NiCu; (b) WC
    Schematics of DED of circular oscillation laser. (a) Schematic of equipment; (b) oscillation trajectory and deposition process
    Fig. 2. Schematics of DED of circular oscillation laser. (a) Schematic of equipment; (b) oscillation trajectory and deposition process
    Schematic of test process
    Fig. 3. Schematic of test process
    XRD patterns of NiCu and NiCu/30%WC composites
    Fig. 4. XRD patterns of NiCu and NiCu/30%WC composites
    Macro-morphologies of deposition layers. (a) NiCu; (b) NiCu/30%WC composites
    Fig. 5. Macro-morphologies of deposition layers. (a) NiCu; (b) NiCu/30%WC composites
    Microstructures of two types of deposition layers. (a) Upper NiCu; (b) central NiCu; (c) lower part of NiCu; (d) upper NiCu/30%WC; (e) central NiCu/30%WC; (f) lower part of NiCu/30%WC
    Fig. 6. Microstructures of two types of deposition layers. (a) Upper NiCu; (b) central NiCu; (c) lower part of NiCu; (d) upper NiCu/30%WC; (e) central NiCu/30%WC; (f) lower part of NiCu/30%WC
    Comparison of grain sizes of NiCu and NiCu/30%WC composites. (a) Microstructure of NiCu; (b) grain size of NiCu; (c) microstructure of NiCu/30%WC; (d) grain size of NiCu/30%WC
    Fig. 7. Comparison of grain sizes of NiCu and NiCu/30%WC composites. (a) Microstructure of NiCu; (b) grain size of NiCu; (c) microstructure of NiCu/30%WC; (d) grain size of NiCu/30%WC
    Crystallization diagrams of NiCu and NiCu/30%WC composites. (a) NiCu; (b) NiCu/30%WC
    Fig. 8. Crystallization diagrams of NiCu and NiCu/30%WC composites. (a) NiCu; (b) NiCu/30%WC
    EDS scanning results of WC particles. (a) Line scanning result; (b) surface scanning result; (c) Ni element distribution; (d) W element distribution; (e) C element distribution; (f) Cu element distribution
    Fig. 9. EDS scanning results of WC particles. (a) Line scanning result; (b) surface scanning result; (c) Ni element distribution; (d) W element distribution; (e) C element distribution; (f) Cu element distribution
    EDS point scanning areas
    Fig. 10. EDS point scanning areas
    Comparison of microhardness
    Fig. 11. Comparison of microhardness
    Friction and wear test results of NiCu and NiCu/30%WC composites. (a) Friction coefficient curves; (b) mass loss; (c) two-dimensional morphologies of wear scars; (d) three-dimensional morphologies of wear scars
    Fig. 12. Friction and wear test results of NiCu and NiCu/30%WC composites. (a) Friction coefficient curves; (b) mass loss; (c) two-dimensional morphologies of wear scars; (d) three-dimensional morphologies of wear scars
    SEM images of worn surfaces. (a) NiCu; (b) NiCu/30%WC composite
    Fig. 13. SEM images of worn surfaces. (a) NiCu; (b) NiCu/30%WC composite
    Wear mechanisms of NiCu and NiCu/30%WC composites
    Fig. 14. Wear mechanisms of NiCu and NiCu/30%WC composites
    PowderVCrFeWCBSiCuNi
    NiCu----0.031.102.0020.00Bal.
    WC0.0010.0230.20095.000-96.0003.950----
    Table 1. Chemical compositions of NiCu and WC powders (mass fraction, %)
    ParameterPower /WScanning speed /(mm/s)Spot diameter /mmOscillation frequency /HzOverlapping ratio /%Powder feed rate /(g/min)Argon flow rate /(L/min)
    Value60060.5305011.33
    Table 2. Optimum process parameters
    ParameterDiffractive crystal planeStart angle /(°)End angle /(°)Counting time /s
    Value311146.0152.018
    Table 3. Parameters for residual stress test
    PointMass fraction /%
    WNiFeCuCr
    169.0524.794.280.681.20
    265.9426.975.330.870.88
    361.3529.547.111.001.00
    464.5826.836.810.721.05
    Table 4. Element compositions and mass fractions obtained by EDS scanning at different positions in Fig. 10
    Siyu Chen, Yelin Xia, Xingyu Liu, Jianbo Lei, Tao Wang. Microstructure and Wear Resistance of Tungsten-Carbide-Reinforced Nickel Copper Alloy Deposited by Circular Oscillating Laser[J]. Chinese Journal of Lasers, 2023, 50(20): 2002103
    Download Citation