• Acta Photonica Sinica
  • Vol. 42, Issue 1, 54 (2013)
XU Shi-long1、2、*, HU Yi-hua1、2, and ZHAO Nan-xiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20134201.0054 Cite this Article
    XU Shi-long, HU Yi-hua, ZHAO Nan-xiang. Extrication of Wake Vortex Parameters Based on Lidar Echo[J]. Acta Photonica Sinica, 2013, 42(1): 54 Copy Citation Text show less
    References

    [1] HAHN K U, SCHWARZ C W. Safe limits for wake vortex penetration[C]. Navigation and Control Conference and Exhibit, Hilton Head, USA: AIAA Guidance, 2007: 1-14.

    [2] GERZ T, HOLZAPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress Aerospace Science, 2002, 38(2): 181-208.

    [3] FREDERIC B, PHILIPPE J, MATHIEU K, et al. Optimizing runway throughput through wake vortex detection, prediction and decision support tools[C]. Proceedings of ESAV'11, Capri, Italy, 2011: 27-32.

    [4] VEILLETTE P R. Data show that U.S wake-turbulence accidents are most frequently at low altitude and during approach and landing[J]. Flight Safety Digest, 2002, 21(3-4): 1-47.

    [5] FRIEDRICH K, STEPHAN R, IGOR S I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 194-206.

    [6] STEEN M, SCHONHALS S, CARIOUS J P. Candidate technologies survey of airport wind & wake-vortex monitoring sensors[C]. 9th Innovative Research Workshop & Exhibition, 2010.

    [7] AKBULUT M, HWANG J, KIMPEL F, et al. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection[C]. Laser Radar Technology and Applications XVI, Proc. of SPIE Vol. 8037, 2011.

    [8] GERZ T, HOLZAPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences (S0376-0421), 2002, 38(3): 181-208.

    [9] BARBARESCO F, MEIER U. Radar monitoring of a wake vortex: electromagnetic reflection of wake turbulence in clear air[J]. Comptes Rendus physique, 2010, 11(9): 54-67.

    [10] FREHLICH R, SHARMAN R. Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 117-130.

    [11] TAO Xiao-hong, HU Yi-hua, LEI Wu-hu, et al. Application of empirical mode decomposition in atmospheric echo processing of lidar[J]. Laser Technology, 2008, 32(6): 590-595.

    [12] FRIEDRICH K, STEPHAN R, IGOR S. Characterization of aircraft wake vortices by 2 μm pulsed doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 914-206.

    [13] STEPHAN R, IGOR S. Aircraft wake vortex measurement with airborne coherent doppler lidar[J]. Journal of Aircraft, 2008, 45(4): 1148-1155.

    [14] WU Yong-hua, HU Yi-hua, DAI Ding-chuan, et al. Research on the technique of aircraft wake vortex detection based on 1.5 μm doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6): 811-817.

    CLP Journals

    [1] QU Yan-chen, DU Jun, ZHAO Wei-jiang, GENG Li-jie, LIU Chuang, ZHANG Rui-liang, CHEN Zhen-lei. A Kind of Phase Modulation Laser Doppler Shift Measuring Method[J]. Acta Photonica Sinica, 2014, 43(11): 1112001

    [2] HU Yi-hua, YU Lei, XU Shi-long, LI Le, DONG Xiao. Doppler Frequency Estimation of Coherent Doppler Wind Lidar Based on Periodogram Maximum Likelihood Algorithm[J]. Acta Photonica Sinica, 2016, 45(12): 1207001

    XU Shi-long, HU Yi-hua, ZHAO Nan-xiang. Extrication of Wake Vortex Parameters Based on Lidar Echo[J]. Acta Photonica Sinica, 2013, 42(1): 54
    Download Citation