• Acta Photonica Sinica
  • Vol. 45, Issue 11, 1127003 (2016)
CAO De-wei*, ZHANG Yi-xin, and HU Zheng-da
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20164511.1127003 Cite this Article
    CAO De-wei, ZHANG Yi-xin, HU Zheng-da. Dynamics of Quantum Coherence in a Fiber-coupled Two-cavity System[J]. Acta Photonica Sinica, 2016, 45(11): 1127003 Copy Citation Text show less
    References

    [1] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

    [2] BENNETT C H, WIESNER S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20): 2881-2884.

    [3] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899.

    [4] VEDRAL V, PLENIO M B. Entanglement measures and purification procedures[J]. Physical Review A, 1998, 57(3): 1619-1633.

    [5] WEI T C, GOLDBRAT P M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states[J]. Physical Review A, 2003, 68(4): 042307.

    [6] VIDAL G, WERNER R F. Computable measure of entanglement[J]. Physical Review A, 2002, 65(3): 032314.

    [7] WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 1998, 80(10): 2245-2248.

    [8] ABERG J. Quantifying superposition[EB/OL]. [2016-05-30]. https: //arxiv.org/pdf/quant-ph/0612146.pdf.

    [9] BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401.

    [10] GIROLAMI D. Observable measure of quantum coherence in finite dimensional systems[J]. Physical Review Letters, 2014, 113(17): 170401.

    [11] SHAO L-H, XI Z J, FAN H, et al. Fidelity and trace-norm distances for quantifying coherence [J].Physical Review A, 2015, 91(4): 042120.

    [12] RANA S, PARASHAR P, LEWENSTEIN M. Trace-distance measure of coherence[J]. Physical Review A, 2016, 93(1): 012110.

    [13] STRELTSOV A. Genuine quantum coherence[EB/OL]. [2016-05-30]. https: //arxiv.org/pdf/1511.08346v1.pdf.

    [14] RASTEGIN A E. Quantum coherence measures based on the Tsallis relative α-entropies[EB/OL]. [2016-05-30]. https: //arxiv.org/pdf/1512.06652v3.pdf

    [15] XI Z, LI Y, FAN H. Quantum coherence and correlations in quantum system[J]. Scientific Reports, 2015, 5: 10922.

    [16] STRELESOV A, SINGH U, DHAR H S, et al. Measuring quantum coherence with entanglement[J]. Physical Review Letters, 2015, 115(2): 020403.

    [17] REISERER A, REMPE G. Cavity-based quantum networks with single atoms and optical photons[J]. Reviews of Modern Physics, 2015, 87(4): 1379-1417.

    [18] GORDON K J, FERNANDEZ V, TOWNSEND P D, et al. A short wavelength gigahertz clocked fiber-optic quantum key distribution system[J]. IEEE Journal of Quantum Electronics, 2004, 40(7): 900-908.

    [19] SPILLANE S M, KIPPENBERG T J, PAINTER O J, et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics[J]. Physical Review Letters, 2003, 91(4): 043902.

    [20] CIRAC J I, ZOLLER P, KIMPLE H J,et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 1997, 78(16): 3221-3224.

    [21] PELLIZZARI T. Quantum networking with optical fibres[J]. Physical Review Letters, 1997, 79(26): 5242-5245.

    [22] SERAFINI A, MANCINI S, BOSE S. Distributed quantum computation via optical fibers[J]. Physical Review Letters, 2006, 96(1): 010503.

    [23] YIN Z, LI F. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber[J]. Physical Review A, 2007, 75(1): 012324.

    [24] ZHANG Y Q, HU Z D, XU J B. Entanglement transfer through arrays of cavities coupled by optical fibers[J]. International Journal of Theoretical Physics, 2011, 50(8): 2438-2445.

    [25] HU Z D, ZHANG Y Q, XU J B. Quantum communication through open-ended quantum networks[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(42): 425303.

    [26] HU Z D, ZHANG Y, ZHANG Y Q. Propagation of nonclassical correlations through one-dimensional quantum networks[J]. Quantum Information Processing, 2014, 13(8): 1841-1855.

    [27] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453: 1023.

    [28] DALIBARD J, CASTIN Y, MOLMER K. Wave-function approach to dissipative processes in quantum optics[J]. Physical Review Letters, 1992, 68(5): 580-583.

    [29] PLENIO M B, KNIGHT P L. The quantum-jump approach to dissipative dynamics in quantum optics[J]. Reviews of Modern Physics, 1998, 70(1): 101-144.

    CAO De-wei, ZHANG Yi-xin, HU Zheng-da. Dynamics of Quantum Coherence in a Fiber-coupled Two-cavity System[J]. Acta Photonica Sinica, 2016, 45(11): 1127003
    Download Citation