• Acta Photonica Sinica
  • Vol. 49, Issue 4, 0423001 (2020)
Jing-yan LÜ1, Hai-tao GUO2, Jun XU3, and Chun-xiao LIU1、*
Author Affiliations
  • 1College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 3School of Electronic Engineering, Xi'an Aeronautical University, Xi'an 710077 China
  • show less
    DOI: 10.3788/gzxb20204904.0423001 Cite this Article
    Jing-yan LÜ, Hai-tao GUO, Jun XU, Chun-xiao LIU. Near-infrared Properties of Optical Planar Waveguides Formed by H+ Ion Implantation in Yb3+-doped Phosphate Glasses[J]. Acta Photonica Sinica, 2020, 49(4): 0423001 Copy Citation Text show less
    References

    [1] Yang TAN, Xiao-biao LIU, Zhi-liang HE. Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation:optical evidences and photonic applications. ACS Photonics, 4, 1531-1538(2017).

    [2] Yang TAN, Feng CHEN, M STEPIĆ. Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination. Optics Express, 16, 10465-70(2008).

    [3] Yang TAN, Han ZHANG, Chu-jun ZHAO. Bi2Se3Q-switched Nd:YAG ceramic waveguide laser. Optics Letters, 40, 637-640(2015).

    [4] Xiao-liang SHEN, Yue WANG, Qi-feng ZHU. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation. Optoelectronics Letters, 14, 104-108(2018).

    [5] H HU, R RICKEN, W SOHLER. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Applied Physics B:Lasers and Optics, 98, 677-679(2010).

    [6] A TERVONEN, B R WEST, S HONKANEN. Ion-exchanged glass waveguide technology:a review. Optical Engineering, 50, 071107(2011).

    [7] Yang TAN, J R ALDANA-DE-VÁZQUEZ, Feng CHEN. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm. Optical Engineering, 53, 107109(2014).

    [8] Bing-xi XIANG, Lei WANG. Near-infrared waveguide in gallium nitride single crystal produced by carbon ion implantation. Japanese Journal of Applied Physics, 56, 050306(2017).

    [9] Ya-nan WANG, Yi LUO, Chang-zheng SUN. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Frontiers of Optoelectronics, 9, 323-329(2016).

    [10] Feng CHEN. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews, 6, 622-640(2012).

    [11] I BÁNYÁSZ, Z ZOLNAI, M FRIED. Leaky mode suppression in planar optical waveguides written in Er:TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 326, 81-85(2014).

    [12] G V VÁZQUEZ, R VALIENTE, S GÓMEZ-SALCES. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Optics & Laser Technology, 79, 132-136(2016).

    [13] Jin-hua ZHAO, Lian ZHANG, Xue-lin WANG. Waveguide and Raman spectroscopic visualization in C-implanted Ca0.20Ba0.80Nb2O6 crystal. Optical Materials Express, 4, 864-869(2014).

    [14] Xiang-fu WANG, Ye-min WANG, Yan-yan BU. Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4. Scientific Reports, 7, 43383(2017).

    [15] G BOULON. Why so deep research on Yb3+-doped optical inorganic materials?. Journal of Alloys and Compounds, 451, 1-11(2008).

    [16] D JAQUE, J C LAGOMACINI, C JACINTO. Continuous-wave diode-pumped Yb:glass laser with near 90% slope efficiency. Applied Physics Letters, 89, 121101(2006).

    [17] H TAKEBE, T MURATA, K MORINAGA. Compositional dependence of absorption and fluorescence of Yb3+ in oxide glass. Journal of the American Ceramic Society, 79, 681-687(2005).

    [18] Chun-xiao LIU, Wei-nan LI, wei WEI. Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation. Chinese Physics B, 21, 074211(2012).

    [19] Qi-feng ZHU, Xiao-liang SHEN, Rui-lin ZHENG. Waveguiding structures in Yb3+-doped phosphate glasses by double-energy proton and single-energy carbon-ion implantations. Materials Research Express, 5, 016404(2017).

    [20] ZIEGLER J F. SRIMthe stopping range of ions in matter.[CPOL].[20130810]. http:www.srim.g.

    [21] D FLUCK, D H JUNDT, P GUNTER. Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters. Journal of Applied Physics, 74, 6023-6031(1993).

    [22] M WHITEJ, P F HEIDRICH. Optical waveguide refractive index profiles determined from measurement of mode indices:a simple analysis. Applied Optics, 15, 151-155(1976).

    [23] P J CHANDLER, F L LAMA. A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation. Optica Acta:International Journal of Optics, 33, 127-143(1986).

    [24] Computer software Beam PROP version 8.0.[CPOL].[20100822]. http:www.rsoftdesign.com.

    Jing-yan LÜ, Hai-tao GUO, Jun XU, Chun-xiao LIU. Near-infrared Properties of Optical Planar Waveguides Formed by H+ Ion Implantation in Yb3+-doped Phosphate Glasses[J]. Acta Photonica Sinica, 2020, 49(4): 0423001
    Download Citation