• Advanced Photonics
  • Vol. 1, Issue 4, 046001 (2019)
Jingxi Li1、2、3、†, Deniz Mengu1、2、3, Yi Luo1、2、3, Yair Rivenson1、2、3, and Aydogan Ozcan1、2、3、*
Author Affiliations
  • 1University of California at Los Angeles, Department of Electrical and Computer Engineering, Los Angeles, California, United States
  • 2University of California at Los Angeles, Department of Bioengineering, Los Angeles, California, United States
  • 3University of California at Los Angeles, California NanoSystems Institute, Los Angeles, California, United States
  • show less
    DOI: 10.1117/1.AP.1.4.046001 Cite this Article Set citation alerts
    Jingxi Li, Deniz Mengu, Yi Luo, Yair Rivenson, Aydogan Ozcan. Class-specific differential detection in diffractive optical neural networks improves inference accuracy[J]. Advanced Photonics, 2019, 1(4): 046001 Copy Citation Text show less
    References

    [1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [2] A. Krizhevsky, F. Pereira, I. Sutskever, G. E. Hinton et al. ImageNet classification with deep convolutional neural networks, 25(2012).

    [3] G. Litjens et al. A survey on deep learning in medical image analysis. Med. Image Anal., 42, 60-88(2017).

    [4] K. Cho et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation(2014).

    [5] A. Graves, A. Mohamed, G. Hinton. Speech recognition with deep recurrent neural networks, 6645-6649(2013).

    [6] D. Psaltis, N. Farhat. Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. Opt. Lett., 10, 98-100(1985).

    [7] N. H. Farhat et al. Optical implementation of the Hopfield model. Appl. Opt., 24, 1469-1475(1985).

    [8] K. Wagner, D. Psaltis. Multilayer optical learning networks. Appl. Opt., 26, 5061-5076(1987).

    [9] D. Psaltis, D. Brady, K. Wagner. Adaptive optical networks using photorefractive crystals. Appl. Opt., 27, 1752-1759(1988).

    [10] D. Psaltis et al. Holography in artificial neural networks. Nature, 343, 325-330(1990).

    [11] R. T. Weverka, K. Wagner, M. Saffman. Fully interconnected, two-dimensional neural arrays using wavelength-multiplexed volume holograms. Opt. Lett., 16, 826-828(1991).

    [12] B. Javidi, J. Li, Q. Tang. Optical implementation of neural networks for face recognition by the use of nonlinear joint transform correlators. Appl. Opt., 34, 3950-3962(1995).

    [13] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [14] A. N. Tait et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).

    [15] J. Bueno et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [16] I. Chakraborty et al. Toward fast neural computing using all-photonic phase change spiking neurons. Sci. Rep., 8, 12980(2018).

    [17] T. W. Hughes et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [18] H. Bagherian et al. On-chip optical convolutional neural NETWORKS(2018).

    [19] A. Mehrabian et al. PCNNA: a photonic convolutional neural network accelerator, 169-173(2018).

    [20] J. George et al. Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks, SpW4G.3(2018).

    [21] N. Soures et al. Neuro-MMI: a hybrid photonic-electronic machine learning platform, 187-188(2018).

    [22] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [23] T. W. Hughes et al. Wave physics as an analog recurrent neural network(2019).

    [24] M. Miscuglio et al. All-optical nonlinear activation function for photonic neural networks [invited]. Opt. Mater. Express, 8, 3851-3863(2018).

    [25] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [26] J. Chang et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [27] D. Mengu et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 3700114(2019).

    [28] E. J. Candes, M. B. Wakin. An introduction to compressive sampling. IEEE Signal Process. Mag., 25, 21-30(2008).

    [29] S. Suthaharan, S. Suthaharan. Support vector machine. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, 207-235(2016).

    [30] Y. Lecun et al. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).

    [31] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [32] L. Breiman. Bagging predictors. Mach. Learn., 24, 123-140(1996).

    [33] C. Ju, A. Bibaut, M. van der Laan. The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat., 45, 2800-2818(2018).

    [34] A. Oland et al. Be careful what you backpropagate: a case for linear output activations and gradient boosting(2017).

    [35] G. Hinton, O. Vinyals, J. Dean. Distilling the knowledge in a neural network(2015).

    [36] B. Lakshminarayanan, I. Guyon, A. Pritzel, C. Blundell et al. Simple and scalable predictive uncertainty estimation using deep ensembles, 30(2017).

    [37] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).

    CLP Journals

    [1] Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493

    Jingxi Li, Deniz Mengu, Yi Luo, Yair Rivenson, Aydogan Ozcan. Class-specific differential detection in diffractive optical neural networks improves inference accuracy[J]. Advanced Photonics, 2019, 1(4): 046001
    Download Citation